1# 2# Model function for Reflectivity evaluation 3# 4 5mu = 1.130469005513490E-001 # (cm-1) @ 17.479 keV 6t0 = 0.18 # cm 7tb = 11.417823202820120 * 0.01745329251994 # thetaB (radians) 8A = mu * t0 / cos(tb) 9P = (1 + (cos(2.*tb))**2) / 2 10Fhkl = sqrt(3.536346308456155**2 + (4.58815426260982e-4)**2) * 0.968 11r0 = 2.81794092e-13 # classical electron radius 12lambda = 7.09338062818239e-9 # Mo K in cm 13V = 1.62253546981499e-23 14P = (1. + (cos(2.*tb))**2) / 2. 15# 16# combine constants to avoid exponential overflow on systems with 17# D floating point format where exponential limits are ca. 10**(+/-38) 18# r0liV = r0 * lambda / V 19r0liV = 2.81794092*7.09338062818239/1.62253546981499e-1 20# 21 22W(x) = 1./(sqrt(2.*pi)*eta) * exp( -1. * x**2 / (2.*eta**2) ) 23Y(tc) = tc/sin(tb) * Fhkl * r0liV 24f(tc)= (tanh(Y(tc)) + abs(cos(2.*tb)) * tanh(abs(Y(tc)*cos(2.*tb)))) / (Y(tc)*(1.+(cos(2.*tb))**2)) 25Q(tc) = (r0*Fhkl/V)**2 * (lambda**3/sin(2.*tb)) * P * f(tc) 26a(x) = W(x) * Q(tc) / mu 27 28# 29 30R(x) = sinh(A*a(x)) * exp(-1.*A*(1.+a(x))) 31