1*> \brief <b> SGELSX solves overdetermined or underdetermined systems for GE matrices</b> 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SGELSX + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelsx.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelsx.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelsx.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, 22* WORK, INFO ) 23* 24* .. Scalar Arguments .. 25* INTEGER INFO, LDA, LDB, M, N, NRHS, RANK 26* REAL RCOND 27* .. 28* .. Array Arguments .. 29* INTEGER JPVT( * ) 30* REAL A( LDA, * ), B( LDB, * ), WORK( * ) 31* .. 32* 33* 34*> \par Purpose: 35* ============= 36*> 37*> \verbatim 38*> 39*> This routine is deprecated and has been replaced by routine SGELSY. 40*> 41*> SGELSX computes the minimum-norm solution to a real linear least 42*> squares problem: 43*> minimize || A * X - B || 44*> using a complete orthogonal factorization of A. A is an M-by-N 45*> matrix which may be rank-deficient. 46*> 47*> Several right hand side vectors b and solution vectors x can be 48*> handled in a single call; they are stored as the columns of the 49*> M-by-NRHS right hand side matrix B and the N-by-NRHS solution 50*> matrix X. 51*> 52*> The routine first computes a QR factorization with column pivoting: 53*> A * P = Q * [ R11 R12 ] 54*> [ 0 R22 ] 55*> with R11 defined as the largest leading submatrix whose estimated 56*> condition number is less than 1/RCOND. The order of R11, RANK, 57*> is the effective rank of A. 58*> 59*> Then, R22 is considered to be negligible, and R12 is annihilated 60*> by orthogonal transformations from the right, arriving at the 61*> complete orthogonal factorization: 62*> A * P = Q * [ T11 0 ] * Z 63*> [ 0 0 ] 64*> The minimum-norm solution is then 65*> X = P * Z**T [ inv(T11)*Q1**T*B ] 66*> [ 0 ] 67*> where Q1 consists of the first RANK columns of Q. 68*> \endverbatim 69* 70* Arguments: 71* ========== 72* 73*> \param[in] M 74*> \verbatim 75*> M is INTEGER 76*> The number of rows of the matrix A. M >= 0. 77*> \endverbatim 78*> 79*> \param[in] N 80*> \verbatim 81*> N is INTEGER 82*> The number of columns of the matrix A. N >= 0. 83*> \endverbatim 84*> 85*> \param[in] NRHS 86*> \verbatim 87*> NRHS is INTEGER 88*> The number of right hand sides, i.e., the number of 89*> columns of matrices B and X. NRHS >= 0. 90*> \endverbatim 91*> 92*> \param[in,out] A 93*> \verbatim 94*> A is REAL array, dimension (LDA,N) 95*> On entry, the M-by-N matrix A. 96*> On exit, A has been overwritten by details of its 97*> complete orthogonal factorization. 98*> \endverbatim 99*> 100*> \param[in] LDA 101*> \verbatim 102*> LDA is INTEGER 103*> The leading dimension of the array A. LDA >= max(1,M). 104*> \endverbatim 105*> 106*> \param[in,out] B 107*> \verbatim 108*> B is REAL array, dimension (LDB,NRHS) 109*> On entry, the M-by-NRHS right hand side matrix B. 110*> On exit, the N-by-NRHS solution matrix X. 111*> If m >= n and RANK = n, the residual sum-of-squares for 112*> the solution in the i-th column is given by the sum of 113*> squares of elements N+1:M in that column. 114*> \endverbatim 115*> 116*> \param[in] LDB 117*> \verbatim 118*> LDB is INTEGER 119*> The leading dimension of the array B. LDB >= max(1,M,N). 120*> \endverbatim 121*> 122*> \param[in,out] JPVT 123*> \verbatim 124*> JPVT is INTEGER array, dimension (N) 125*> On entry, if JPVT(i) .ne. 0, the i-th column of A is an 126*> initial column, otherwise it is a free column. Before 127*> the QR factorization of A, all initial columns are 128*> permuted to the leading positions; only the remaining 129*> free columns are moved as a result of column pivoting 130*> during the factorization. 131*> On exit, if JPVT(i) = k, then the i-th column of A*P 132*> was the k-th column of A. 133*> \endverbatim 134*> 135*> \param[in] RCOND 136*> \verbatim 137*> RCOND is REAL 138*> RCOND is used to determine the effective rank of A, which 139*> is defined as the order of the largest leading triangular 140*> submatrix R11 in the QR factorization with pivoting of A, 141*> whose estimated condition number < 1/RCOND. 142*> \endverbatim 143*> 144*> \param[out] RANK 145*> \verbatim 146*> RANK is INTEGER 147*> The effective rank of A, i.e., the order of the submatrix 148*> R11. This is the same as the order of the submatrix T11 149*> in the complete orthogonal factorization of A. 150*> \endverbatim 151*> 152*> \param[out] WORK 153*> \verbatim 154*> WORK is REAL array, dimension 155*> (max( min(M,N)+3*N, 2*min(M,N)+NRHS )), 156*> \endverbatim 157*> 158*> \param[out] INFO 159*> \verbatim 160*> INFO is INTEGER 161*> = 0: successful exit 162*> < 0: if INFO = -i, the i-th argument had an illegal value 163*> \endverbatim 164* 165* Authors: 166* ======== 167* 168*> \author Univ. of Tennessee 169*> \author Univ. of California Berkeley 170*> \author Univ. of Colorado Denver 171*> \author NAG Ltd. 172* 173*> \ingroup realGEsolve 174* 175* ===================================================================== 176 SUBROUTINE SGELSX( M, N, NRHS, A, LDA, B, LDB, JPVT, RCOND, RANK, 177 $ WORK, INFO ) 178* 179* -- LAPACK driver routine -- 180* -- LAPACK is a software package provided by Univ. of Tennessee, -- 181* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 182* 183* .. Scalar Arguments .. 184 INTEGER INFO, LDA, LDB, M, N, NRHS, RANK 185 REAL RCOND 186* .. 187* .. Array Arguments .. 188 INTEGER JPVT( * ) 189 REAL A( LDA, * ), B( LDB, * ), WORK( * ) 190* .. 191* 192* ===================================================================== 193* 194* .. Parameters .. 195 INTEGER IMAX, IMIN 196 PARAMETER ( IMAX = 1, IMIN = 2 ) 197 REAL ZERO, ONE, DONE, NTDONE 198 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, DONE = ZERO, 199 $ NTDONE = ONE ) 200* .. 201* .. Local Scalars .. 202 INTEGER I, IASCL, IBSCL, ISMAX, ISMIN, J, K, MN 203 REAL ANRM, BIGNUM, BNRM, C1, C2, S1, S2, SMAX, 204 $ SMAXPR, SMIN, SMINPR, SMLNUM, T1, T2 205* .. 206* .. External Functions .. 207 REAL SLAMCH, SLANGE 208 EXTERNAL SLAMCH, SLANGE 209* .. 210* .. External Subroutines .. 211 EXTERNAL SGEQPF, SLABAD, SLAIC1, SLASCL, SLASET, SLATZM, 212 $ SORM2R, STRSM, STZRQF, XERBLA 213* .. 214* .. Intrinsic Functions .. 215 INTRINSIC ABS, MAX, MIN 216* .. 217* .. Executable Statements .. 218* 219 MN = MIN( M, N ) 220 ISMIN = MN + 1 221 ISMAX = 2*MN + 1 222* 223* Test the input arguments. 224* 225 INFO = 0 226 IF( M.LT.0 ) THEN 227 INFO = -1 228 ELSE IF( N.LT.0 ) THEN 229 INFO = -2 230 ELSE IF( NRHS.LT.0 ) THEN 231 INFO = -3 232 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 233 INFO = -5 234 ELSE IF( LDB.LT.MAX( 1, M, N ) ) THEN 235 INFO = -7 236 END IF 237* 238 IF( INFO.NE.0 ) THEN 239 CALL XERBLA( 'SGELSX', -INFO ) 240 RETURN 241 END IF 242* 243* Quick return if possible 244* 245 IF( MIN( M, N, NRHS ).EQ.0 ) THEN 246 RANK = 0 247 RETURN 248 END IF 249* 250* Get machine parameters 251* 252 SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' ) 253 BIGNUM = ONE / SMLNUM 254 CALL SLABAD( SMLNUM, BIGNUM ) 255* 256* Scale A, B if max elements outside range [SMLNUM,BIGNUM] 257* 258 ANRM = SLANGE( 'M', M, N, A, LDA, WORK ) 259 IASCL = 0 260 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN 261* 262* Scale matrix norm up to SMLNUM 263* 264 CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, A, LDA, INFO ) 265 IASCL = 1 266 ELSE IF( ANRM.GT.BIGNUM ) THEN 267* 268* Scale matrix norm down to BIGNUM 269* 270 CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, A, LDA, INFO ) 271 IASCL = 2 272 ELSE IF( ANRM.EQ.ZERO ) THEN 273* 274* Matrix all zero. Return zero solution. 275* 276 CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) 277 RANK = 0 278 GO TO 100 279 END IF 280* 281 BNRM = SLANGE( 'M', M, NRHS, B, LDB, WORK ) 282 IBSCL = 0 283 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN 284* 285* Scale matrix norm up to SMLNUM 286* 287 CALL SLASCL( 'G', 0, 0, BNRM, SMLNUM, M, NRHS, B, LDB, INFO ) 288 IBSCL = 1 289 ELSE IF( BNRM.GT.BIGNUM ) THEN 290* 291* Scale matrix norm down to BIGNUM 292* 293 CALL SLASCL( 'G', 0, 0, BNRM, BIGNUM, M, NRHS, B, LDB, INFO ) 294 IBSCL = 2 295 END IF 296* 297* Compute QR factorization with column pivoting of A: 298* A * P = Q * R 299* 300 CALL SGEQPF( M, N, A, LDA, JPVT, WORK( 1 ), WORK( MN+1 ), INFO ) 301* 302* workspace 3*N. Details of Householder rotations stored 303* in WORK(1:MN). 304* 305* Determine RANK using incremental condition estimation 306* 307 WORK( ISMIN ) = ONE 308 WORK( ISMAX ) = ONE 309 SMAX = ABS( A( 1, 1 ) ) 310 SMIN = SMAX 311 IF( ABS( A( 1, 1 ) ).EQ.ZERO ) THEN 312 RANK = 0 313 CALL SLASET( 'F', MAX( M, N ), NRHS, ZERO, ZERO, B, LDB ) 314 GO TO 100 315 ELSE 316 RANK = 1 317 END IF 318* 319 10 CONTINUE 320 IF( RANK.LT.MN ) THEN 321 I = RANK + 1 322 CALL SLAIC1( IMIN, RANK, WORK( ISMIN ), SMIN, A( 1, I ), 323 $ A( I, I ), SMINPR, S1, C1 ) 324 CALL SLAIC1( IMAX, RANK, WORK( ISMAX ), SMAX, A( 1, I ), 325 $ A( I, I ), SMAXPR, S2, C2 ) 326* 327 IF( SMAXPR*RCOND.LE.SMINPR ) THEN 328 DO 20 I = 1, RANK 329 WORK( ISMIN+I-1 ) = S1*WORK( ISMIN+I-1 ) 330 WORK( ISMAX+I-1 ) = S2*WORK( ISMAX+I-1 ) 331 20 CONTINUE 332 WORK( ISMIN+RANK ) = C1 333 WORK( ISMAX+RANK ) = C2 334 SMIN = SMINPR 335 SMAX = SMAXPR 336 RANK = RANK + 1 337 GO TO 10 338 END IF 339 END IF 340* 341* Logically partition R = [ R11 R12 ] 342* [ 0 R22 ] 343* where R11 = R(1:RANK,1:RANK) 344* 345* [R11,R12] = [ T11, 0 ] * Y 346* 347 IF( RANK.LT.N ) 348 $ CALL STZRQF( RANK, N, A, LDA, WORK( MN+1 ), INFO ) 349* 350* Details of Householder rotations stored in WORK(MN+1:2*MN) 351* 352* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) 353* 354 CALL SORM2R( 'Left', 'Transpose', M, NRHS, MN, A, LDA, WORK( 1 ), 355 $ B, LDB, WORK( 2*MN+1 ), INFO ) 356* 357* workspace NRHS 358* 359* B(1:RANK,1:NRHS) := inv(T11) * B(1:RANK,1:NRHS) 360* 361 CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', RANK, 362 $ NRHS, ONE, A, LDA, B, LDB ) 363* 364 DO 40 I = RANK + 1, N 365 DO 30 J = 1, NRHS 366 B( I, J ) = ZERO 367 30 CONTINUE 368 40 CONTINUE 369* 370* B(1:N,1:NRHS) := Y**T * B(1:N,1:NRHS) 371* 372 IF( RANK.LT.N ) THEN 373 DO 50 I = 1, RANK 374 CALL SLATZM( 'Left', N-RANK+1, NRHS, A( I, RANK+1 ), LDA, 375 $ WORK( MN+I ), B( I, 1 ), B( RANK+1, 1 ), LDB, 376 $ WORK( 2*MN+1 ) ) 377 50 CONTINUE 378 END IF 379* 380* workspace NRHS 381* 382* B(1:N,1:NRHS) := P * B(1:N,1:NRHS) 383* 384 DO 90 J = 1, NRHS 385 DO 60 I = 1, N 386 WORK( 2*MN+I ) = NTDONE 387 60 CONTINUE 388 DO 80 I = 1, N 389 IF( WORK( 2*MN+I ).EQ.NTDONE ) THEN 390 IF( JPVT( I ).NE.I ) THEN 391 K = I 392 T1 = B( K, J ) 393 T2 = B( JPVT( K ), J ) 394 70 CONTINUE 395 B( JPVT( K ), J ) = T1 396 WORK( 2*MN+K ) = DONE 397 T1 = T2 398 K = JPVT( K ) 399 T2 = B( JPVT( K ), J ) 400 IF( JPVT( K ).NE.I ) 401 $ GO TO 70 402 B( I, J ) = T1 403 WORK( 2*MN+K ) = DONE 404 END IF 405 END IF 406 80 CONTINUE 407 90 CONTINUE 408* 409* Undo scaling 410* 411 IF( IASCL.EQ.1 ) THEN 412 CALL SLASCL( 'G', 0, 0, ANRM, SMLNUM, N, NRHS, B, LDB, INFO ) 413 CALL SLASCL( 'U', 0, 0, SMLNUM, ANRM, RANK, RANK, A, LDA, 414 $ INFO ) 415 ELSE IF( IASCL.EQ.2 ) THEN 416 CALL SLASCL( 'G', 0, 0, ANRM, BIGNUM, N, NRHS, B, LDB, INFO ) 417 CALL SLASCL( 'U', 0, 0, BIGNUM, ANRM, RANK, RANK, A, LDA, 418 $ INFO ) 419 END IF 420 IF( IBSCL.EQ.1 ) THEN 421 CALL SLASCL( 'G', 0, 0, SMLNUM, BNRM, N, NRHS, B, LDB, INFO ) 422 ELSE IF( IBSCL.EQ.2 ) THEN 423 CALL SLASCL( 'G', 0, 0, BIGNUM, BNRM, N, NRHS, B, LDB, INFO ) 424 END IF 425* 426 100 CONTINUE 427* 428 RETURN 429* 430* End of SGELSX 431* 432 END 433