1*> \brief <b> CGGEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b> 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download CGGEV + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cggev.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cggev.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cggev.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE CGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, 22* VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO ) 23* 24* .. Scalar Arguments .. 25* CHARACTER JOBVL, JOBVR 26* INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N 27* .. 28* .. Array Arguments .. 29* REAL RWORK( * ) 30* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), 31* $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ), 32* $ WORK( * ) 33* .. 34* 35* 36*> \par Purpose: 37* ============= 38*> 39*> \verbatim 40*> 41*> CGGEV computes for a pair of N-by-N complex nonsymmetric matrices 42*> (A,B), the generalized eigenvalues, and optionally, the left and/or 43*> right generalized eigenvectors. 44*> 45*> A generalized eigenvalue for a pair of matrices (A,B) is a scalar 46*> lambda or a ratio alpha/beta = lambda, such that A - lambda*B is 47*> singular. It is usually represented as the pair (alpha,beta), as 48*> there is a reasonable interpretation for beta=0, and even for both 49*> being zero. 50*> 51*> The right generalized eigenvector v(j) corresponding to the 52*> generalized eigenvalue lambda(j) of (A,B) satisfies 53*> 54*> A * v(j) = lambda(j) * B * v(j). 55*> 56*> The left generalized eigenvector u(j) corresponding to the 57*> generalized eigenvalues lambda(j) of (A,B) satisfies 58*> 59*> u(j)**H * A = lambda(j) * u(j)**H * B 60*> 61*> where u(j)**H is the conjugate-transpose of u(j). 62*> \endverbatim 63* 64* Arguments: 65* ========== 66* 67*> \param[in] JOBVL 68*> \verbatim 69*> JOBVL is CHARACTER*1 70*> = 'N': do not compute the left generalized eigenvectors; 71*> = 'V': compute the left generalized eigenvectors. 72*> \endverbatim 73*> 74*> \param[in] JOBVR 75*> \verbatim 76*> JOBVR is CHARACTER*1 77*> = 'N': do not compute the right generalized eigenvectors; 78*> = 'V': compute the right generalized eigenvectors. 79*> \endverbatim 80*> 81*> \param[in] N 82*> \verbatim 83*> N is INTEGER 84*> The order of the matrices A, B, VL, and VR. N >= 0. 85*> \endverbatim 86*> 87*> \param[in,out] A 88*> \verbatim 89*> A is COMPLEX array, dimension (LDA, N) 90*> On entry, the matrix A in the pair (A,B). 91*> On exit, A has been overwritten. 92*> \endverbatim 93*> 94*> \param[in] LDA 95*> \verbatim 96*> LDA is INTEGER 97*> The leading dimension of A. LDA >= max(1,N). 98*> \endverbatim 99*> 100*> \param[in,out] B 101*> \verbatim 102*> B is COMPLEX array, dimension (LDB, N) 103*> On entry, the matrix B in the pair (A,B). 104*> On exit, B has been overwritten. 105*> \endverbatim 106*> 107*> \param[in] LDB 108*> \verbatim 109*> LDB is INTEGER 110*> The leading dimension of B. LDB >= max(1,N). 111*> \endverbatim 112*> 113*> \param[out] ALPHA 114*> \verbatim 115*> ALPHA is COMPLEX array, dimension (N) 116*> \endverbatim 117*> 118*> \param[out] BETA 119*> \verbatim 120*> BETA is COMPLEX array, dimension (N) 121*> On exit, ALPHA(j)/BETA(j), j=1,...,N, will be the 122*> generalized eigenvalues. 123*> 124*> Note: the quotients ALPHA(j)/BETA(j) may easily over- or 125*> underflow, and BETA(j) may even be zero. Thus, the user 126*> should avoid naively computing the ratio alpha/beta. 127*> However, ALPHA will be always less than and usually 128*> comparable with norm(A) in magnitude, and BETA always less 129*> than and usually comparable with norm(B). 130*> \endverbatim 131*> 132*> \param[out] VL 133*> \verbatim 134*> VL is COMPLEX array, dimension (LDVL,N) 135*> If JOBVL = 'V', the left generalized eigenvectors u(j) are 136*> stored one after another in the columns of VL, in the same 137*> order as their eigenvalues. 138*> Each eigenvector is scaled so the largest component has 139*> abs(real part) + abs(imag. part) = 1. 140*> Not referenced if JOBVL = 'N'. 141*> \endverbatim 142*> 143*> \param[in] LDVL 144*> \verbatim 145*> LDVL is INTEGER 146*> The leading dimension of the matrix VL. LDVL >= 1, and 147*> if JOBVL = 'V', LDVL >= N. 148*> \endverbatim 149*> 150*> \param[out] VR 151*> \verbatim 152*> VR is COMPLEX array, dimension (LDVR,N) 153*> If JOBVR = 'V', the right generalized eigenvectors v(j) are 154*> stored one after another in the columns of VR, in the same 155*> order as their eigenvalues. 156*> Each eigenvector is scaled so the largest component has 157*> abs(real part) + abs(imag. part) = 1. 158*> Not referenced if JOBVR = 'N'. 159*> \endverbatim 160*> 161*> \param[in] LDVR 162*> \verbatim 163*> LDVR is INTEGER 164*> The leading dimension of the matrix VR. LDVR >= 1, and 165*> if JOBVR = 'V', LDVR >= N. 166*> \endverbatim 167*> 168*> \param[out] WORK 169*> \verbatim 170*> WORK is COMPLEX array, dimension (MAX(1,LWORK)) 171*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. 172*> \endverbatim 173*> 174*> \param[in] LWORK 175*> \verbatim 176*> LWORK is INTEGER 177*> The dimension of the array WORK. LWORK >= max(1,2*N). 178*> For good performance, LWORK must generally be larger. 179*> 180*> If LWORK = -1, then a workspace query is assumed; the routine 181*> only calculates the optimal size of the WORK array, returns 182*> this value as the first entry of the WORK array, and no error 183*> message related to LWORK is issued by XERBLA. 184*> \endverbatim 185*> 186*> \param[out] RWORK 187*> \verbatim 188*> RWORK is REAL array, dimension (8*N) 189*> \endverbatim 190*> 191*> \param[out] INFO 192*> \verbatim 193*> INFO is INTEGER 194*> = 0: successful exit 195*> < 0: if INFO = -i, the i-th argument had an illegal value. 196*> =1,...,N: 197*> The QZ iteration failed. No eigenvectors have been 198*> calculated, but ALPHA(j) and BETA(j) should be 199*> correct for j=INFO+1,...,N. 200*> > N: =N+1: other then QZ iteration failed in CHGEQZ, 201*> =N+2: error return from CTGEVC. 202*> \endverbatim 203* 204* Authors: 205* ======== 206* 207*> \author Univ. of Tennessee 208*> \author Univ. of California Berkeley 209*> \author Univ. of Colorado Denver 210*> \author NAG Ltd. 211* 212*> \ingroup complexGEeigen 213* 214* ===================================================================== 215 SUBROUTINE CGGEV( JOBVL, JOBVR, N, A, LDA, B, LDB, ALPHA, BETA, 216 $ VL, LDVL, VR, LDVR, WORK, LWORK, RWORK, INFO ) 217* 218* -- LAPACK driver routine -- 219* -- LAPACK is a software package provided by Univ. of Tennessee, -- 220* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 221* 222* .. Scalar Arguments .. 223 CHARACTER JOBVL, JOBVR 224 INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, N 225* .. 226* .. Array Arguments .. 227 REAL RWORK( * ) 228 COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ), 229 $ BETA( * ), VL( LDVL, * ), VR( LDVR, * ), 230 $ WORK( * ) 231* .. 232* 233* ===================================================================== 234* 235* .. Parameters .. 236 REAL ZERO, ONE 237 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) 238 COMPLEX CZERO, CONE 239 PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ), 240 $ CONE = ( 1.0E0, 0.0E0 ) ) 241* .. 242* .. Local Scalars .. 243 LOGICAL ILASCL, ILBSCL, ILV, ILVL, ILVR, LQUERY 244 CHARACTER CHTEMP 245 INTEGER ICOLS, IERR, IHI, IJOBVL, IJOBVR, ILEFT, ILO, 246 $ IN, IRIGHT, IROWS, IRWRK, ITAU, IWRK, JC, JR, 247 $ LWKMIN, LWKOPT 248 REAL ANRM, ANRMTO, BIGNUM, BNRM, BNRMTO, EPS, 249 $ SMLNUM, TEMP 250 COMPLEX X 251* .. 252* .. Local Arrays .. 253 LOGICAL LDUMMA( 1 ) 254* .. 255* .. External Subroutines .. 256 EXTERNAL CGEQRF, CGGBAK, CGGBAL, CGGHRD, CHGEQZ, CLACPY, 257 $ CLASCL, CLASET, CTGEVC, CUNGQR, CUNMQR, SLABAD, 258 $ XERBLA 259* .. 260* .. External Functions .. 261 LOGICAL LSAME 262 INTEGER ILAENV 263 REAL CLANGE, SLAMCH 264 EXTERNAL LSAME, ILAENV, CLANGE, SLAMCH 265* .. 266* .. Intrinsic Functions .. 267 INTRINSIC ABS, AIMAG, MAX, REAL, SQRT 268* .. 269* .. Statement Functions .. 270 REAL ABS1 271* .. 272* .. Statement Function definitions .. 273 ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) ) 274* .. 275* .. Executable Statements .. 276* 277* Decode the input arguments 278* 279 IF( LSAME( JOBVL, 'N' ) ) THEN 280 IJOBVL = 1 281 ILVL = .FALSE. 282 ELSE IF( LSAME( JOBVL, 'V' ) ) THEN 283 IJOBVL = 2 284 ILVL = .TRUE. 285 ELSE 286 IJOBVL = -1 287 ILVL = .FALSE. 288 END IF 289* 290 IF( LSAME( JOBVR, 'N' ) ) THEN 291 IJOBVR = 1 292 ILVR = .FALSE. 293 ELSE IF( LSAME( JOBVR, 'V' ) ) THEN 294 IJOBVR = 2 295 ILVR = .TRUE. 296 ELSE 297 IJOBVR = -1 298 ILVR = .FALSE. 299 END IF 300 ILV = ILVL .OR. ILVR 301* 302* Test the input arguments 303* 304 INFO = 0 305 LQUERY = ( LWORK.EQ.-1 ) 306 IF( IJOBVL.LE.0 ) THEN 307 INFO = -1 308 ELSE IF( IJOBVR.LE.0 ) THEN 309 INFO = -2 310 ELSE IF( N.LT.0 ) THEN 311 INFO = -3 312 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 313 INFO = -5 314 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN 315 INFO = -7 316 ELSE IF( LDVL.LT.1 .OR. ( ILVL .AND. LDVL.LT.N ) ) THEN 317 INFO = -11 318 ELSE IF( LDVR.LT.1 .OR. ( ILVR .AND. LDVR.LT.N ) ) THEN 319 INFO = -13 320 END IF 321* 322* Compute workspace 323* (Note: Comments in the code beginning "Workspace:" describe the 324* minimal amount of workspace needed at that point in the code, 325* as well as the preferred amount for good performance. 326* NB refers to the optimal block size for the immediately 327* following subroutine, as returned by ILAENV. The workspace is 328* computed assuming ILO = 1 and IHI = N, the worst case.) 329* 330 IF( INFO.EQ.0 ) THEN 331 LWKMIN = MAX( 1, 2*N ) 332 LWKOPT = MAX( 1, N + N*ILAENV( 1, 'CGEQRF', ' ', N, 1, N, 0 ) ) 333 LWKOPT = MAX( LWKOPT, N + 334 $ N*ILAENV( 1, 'CUNMQR', ' ', N, 1, N, 0 ) ) 335 IF( ILVL ) THEN 336 LWKOPT = MAX( LWKOPT, N + 337 $ N*ILAENV( 1, 'CUNGQR', ' ', N, 1, N, -1 ) ) 338 END IF 339 WORK( 1 ) = LWKOPT 340* 341 IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) 342 $ INFO = -15 343 END IF 344* 345 IF( INFO.NE.0 ) THEN 346 CALL XERBLA( 'CGGEV ', -INFO ) 347 RETURN 348 ELSE IF( LQUERY ) THEN 349 RETURN 350 END IF 351* 352* Quick return if possible 353* 354 IF( N.EQ.0 ) 355 $ RETURN 356* 357* Get machine constants 358* 359 EPS = SLAMCH( 'E' )*SLAMCH( 'B' ) 360 SMLNUM = SLAMCH( 'S' ) 361 BIGNUM = ONE / SMLNUM 362 CALL SLABAD( SMLNUM, BIGNUM ) 363 SMLNUM = SQRT( SMLNUM ) / EPS 364 BIGNUM = ONE / SMLNUM 365* 366* Scale A if max element outside range [SMLNUM,BIGNUM] 367* 368 ANRM = CLANGE( 'M', N, N, A, LDA, RWORK ) 369 ILASCL = .FALSE. 370 IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN 371 ANRMTO = SMLNUM 372 ILASCL = .TRUE. 373 ELSE IF( ANRM.GT.BIGNUM ) THEN 374 ANRMTO = BIGNUM 375 ILASCL = .TRUE. 376 END IF 377 IF( ILASCL ) 378 $ CALL CLASCL( 'G', 0, 0, ANRM, ANRMTO, N, N, A, LDA, IERR ) 379* 380* Scale B if max element outside range [SMLNUM,BIGNUM] 381* 382 BNRM = CLANGE( 'M', N, N, B, LDB, RWORK ) 383 ILBSCL = .FALSE. 384 IF( BNRM.GT.ZERO .AND. BNRM.LT.SMLNUM ) THEN 385 BNRMTO = SMLNUM 386 ILBSCL = .TRUE. 387 ELSE IF( BNRM.GT.BIGNUM ) THEN 388 BNRMTO = BIGNUM 389 ILBSCL = .TRUE. 390 END IF 391 IF( ILBSCL ) 392 $ CALL CLASCL( 'G', 0, 0, BNRM, BNRMTO, N, N, B, LDB, IERR ) 393* 394* Permute the matrices A, B to isolate eigenvalues if possible 395* (Real Workspace: need 6*N) 396* 397 ILEFT = 1 398 IRIGHT = N + 1 399 IRWRK = IRIGHT + N 400 CALL CGGBAL( 'P', N, A, LDA, B, LDB, ILO, IHI, RWORK( ILEFT ), 401 $ RWORK( IRIGHT ), RWORK( IRWRK ), IERR ) 402* 403* Reduce B to triangular form (QR decomposition of B) 404* (Complex Workspace: need N, prefer N*NB) 405* 406 IROWS = IHI + 1 - ILO 407 IF( ILV ) THEN 408 ICOLS = N + 1 - ILO 409 ELSE 410 ICOLS = IROWS 411 END IF 412 ITAU = 1 413 IWRK = ITAU + IROWS 414 CALL CGEQRF( IROWS, ICOLS, B( ILO, ILO ), LDB, WORK( ITAU ), 415 $ WORK( IWRK ), LWORK+1-IWRK, IERR ) 416* 417* Apply the orthogonal transformation to matrix A 418* (Complex Workspace: need N, prefer N*NB) 419* 420 CALL CUNMQR( 'L', 'C', IROWS, ICOLS, IROWS, B( ILO, ILO ), LDB, 421 $ WORK( ITAU ), A( ILO, ILO ), LDA, WORK( IWRK ), 422 $ LWORK+1-IWRK, IERR ) 423* 424* Initialize VL 425* (Complex Workspace: need N, prefer N*NB) 426* 427 IF( ILVL ) THEN 428 CALL CLASET( 'Full', N, N, CZERO, CONE, VL, LDVL ) 429 IF( IROWS.GT.1 ) THEN 430 CALL CLACPY( 'L', IROWS-1, IROWS-1, B( ILO+1, ILO ), LDB, 431 $ VL( ILO+1, ILO ), LDVL ) 432 END IF 433 CALL CUNGQR( IROWS, IROWS, IROWS, VL( ILO, ILO ), LDVL, 434 $ WORK( ITAU ), WORK( IWRK ), LWORK+1-IWRK, IERR ) 435 END IF 436* 437* Initialize VR 438* 439 IF( ILVR ) 440 $ CALL CLASET( 'Full', N, N, CZERO, CONE, VR, LDVR ) 441* 442* Reduce to generalized Hessenberg form 443* 444 IF( ILV ) THEN 445* 446* Eigenvectors requested -- work on whole matrix. 447* 448 CALL CGGHRD( JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, VL, 449 $ LDVL, VR, LDVR, IERR ) 450 ELSE 451 CALL CGGHRD( 'N', 'N', IROWS, 1, IROWS, A( ILO, ILO ), LDA, 452 $ B( ILO, ILO ), LDB, VL, LDVL, VR, LDVR, IERR ) 453 END IF 454* 455* Perform QZ algorithm (Compute eigenvalues, and optionally, the 456* Schur form and Schur vectors) 457* (Complex Workspace: need N) 458* (Real Workspace: need N) 459* 460 IWRK = ITAU 461 IF( ILV ) THEN 462 CHTEMP = 'S' 463 ELSE 464 CHTEMP = 'E' 465 END IF 466 CALL CHGEQZ( CHTEMP, JOBVL, JOBVR, N, ILO, IHI, A, LDA, B, LDB, 467 $ ALPHA, BETA, VL, LDVL, VR, LDVR, WORK( IWRK ), 468 $ LWORK+1-IWRK, RWORK( IRWRK ), IERR ) 469 IF( IERR.NE.0 ) THEN 470 IF( IERR.GT.0 .AND. IERR.LE.N ) THEN 471 INFO = IERR 472 ELSE IF( IERR.GT.N .AND. IERR.LE.2*N ) THEN 473 INFO = IERR - N 474 ELSE 475 INFO = N + 1 476 END IF 477 GO TO 70 478 END IF 479* 480* Compute Eigenvectors 481* (Real Workspace: need 2*N) 482* (Complex Workspace: need 2*N) 483* 484 IF( ILV ) THEN 485 IF( ILVL ) THEN 486 IF( ILVR ) THEN 487 CHTEMP = 'B' 488 ELSE 489 CHTEMP = 'L' 490 END IF 491 ELSE 492 CHTEMP = 'R' 493 END IF 494* 495 CALL CTGEVC( CHTEMP, 'B', LDUMMA, N, A, LDA, B, LDB, VL, LDVL, 496 $ VR, LDVR, N, IN, WORK( IWRK ), RWORK( IRWRK ), 497 $ IERR ) 498 IF( IERR.NE.0 ) THEN 499 INFO = N + 2 500 GO TO 70 501 END IF 502* 503* Undo balancing on VL and VR and normalization 504* (Workspace: none needed) 505* 506 IF( ILVL ) THEN 507 CALL CGGBAK( 'P', 'L', N, ILO, IHI, RWORK( ILEFT ), 508 $ RWORK( IRIGHT ), N, VL, LDVL, IERR ) 509 DO 30 JC = 1, N 510 TEMP = ZERO 511 DO 10 JR = 1, N 512 TEMP = MAX( TEMP, ABS1( VL( JR, JC ) ) ) 513 10 CONTINUE 514 IF( TEMP.LT.SMLNUM ) 515 $ GO TO 30 516 TEMP = ONE / TEMP 517 DO 20 JR = 1, N 518 VL( JR, JC ) = VL( JR, JC )*TEMP 519 20 CONTINUE 520 30 CONTINUE 521 END IF 522 IF( ILVR ) THEN 523 CALL CGGBAK( 'P', 'R', N, ILO, IHI, RWORK( ILEFT ), 524 $ RWORK( IRIGHT ), N, VR, LDVR, IERR ) 525 DO 60 JC = 1, N 526 TEMP = ZERO 527 DO 40 JR = 1, N 528 TEMP = MAX( TEMP, ABS1( VR( JR, JC ) ) ) 529 40 CONTINUE 530 IF( TEMP.LT.SMLNUM ) 531 $ GO TO 60 532 TEMP = ONE / TEMP 533 DO 50 JR = 1, N 534 VR( JR, JC ) = VR( JR, JC )*TEMP 535 50 CONTINUE 536 60 CONTINUE 537 END IF 538 END IF 539* 540* Undo scaling if necessary 541* 542 70 CONTINUE 543* 544 IF( ILASCL ) 545 $ CALL CLASCL( 'G', 0, 0, ANRMTO, ANRM, N, 1, ALPHA, N, IERR ) 546* 547 IF( ILBSCL ) 548 $ CALL CLASCL( 'G', 0, 0, BNRMTO, BNRM, N, 1, BETA, N, IERR ) 549* 550 WORK( 1 ) = LWKOPT 551 RETURN 552* 553* End of CGGEV 554* 555 END 556