1*> \brief \b CLAR1V computes the (scaled) r-th column of the inverse of the submatrix in rows b1 through bn of the tridiagonal matrix LDLT - λI.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLAR1V + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clar1v.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clar1v.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clar1v.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
22*                  PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
23*                  R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
24*
25*       .. Scalar Arguments ..
26*       LOGICAL            WANTNC
27*       INTEGER   B1, BN, N, NEGCNT, R
28*       REAL               GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
29*      $                   RQCORR, ZTZ
30*       ..
31*       .. Array Arguments ..
32*       INTEGER            ISUPPZ( * )
33*       REAL               D( * ), L( * ), LD( * ), LLD( * ),
34*      $                  WORK( * )
35*       COMPLEX          Z( * )
36*       ..
37*
38*
39*> \par Purpose:
40*  =============
41*>
42*> \verbatim
43*>
44*> CLAR1V computes the (scaled) r-th column of the inverse of
45*> the sumbmatrix in rows B1 through BN of the tridiagonal matrix
46*> L D L**T - sigma I. When sigma is close to an eigenvalue, the
47*> computed vector is an accurate eigenvector. Usually, r corresponds
48*> to the index where the eigenvector is largest in magnitude.
49*> The following steps accomplish this computation :
50*> (a) Stationary qd transform,  L D L**T - sigma I = L(+) D(+) L(+)**T,
51*> (b) Progressive qd transform, L D L**T - sigma I = U(-) D(-) U(-)**T,
52*> (c) Computation of the diagonal elements of the inverse of
53*>     L D L**T - sigma I by combining the above transforms, and choosing
54*>     r as the index where the diagonal of the inverse is (one of the)
55*>     largest in magnitude.
56*> (d) Computation of the (scaled) r-th column of the inverse using the
57*>     twisted factorization obtained by combining the top part of the
58*>     the stationary and the bottom part of the progressive transform.
59*> \endverbatim
60*
61*  Arguments:
62*  ==========
63*
64*> \param[in] N
65*> \verbatim
66*>          N is INTEGER
67*>           The order of the matrix L D L**T.
68*> \endverbatim
69*>
70*> \param[in] B1
71*> \verbatim
72*>          B1 is INTEGER
73*>           First index of the submatrix of L D L**T.
74*> \endverbatim
75*>
76*> \param[in] BN
77*> \verbatim
78*>          BN is INTEGER
79*>           Last index of the submatrix of L D L**T.
80*> \endverbatim
81*>
82*> \param[in] LAMBDA
83*> \verbatim
84*>          LAMBDA is REAL
85*>           The shift. In order to compute an accurate eigenvector,
86*>           LAMBDA should be a good approximation to an eigenvalue
87*>           of L D L**T.
88*> \endverbatim
89*>
90*> \param[in] L
91*> \verbatim
92*>          L is REAL array, dimension (N-1)
93*>           The (n-1) subdiagonal elements of the unit bidiagonal matrix
94*>           L, in elements 1 to N-1.
95*> \endverbatim
96*>
97*> \param[in] D
98*> \verbatim
99*>          D is REAL array, dimension (N)
100*>           The n diagonal elements of the diagonal matrix D.
101*> \endverbatim
102*>
103*> \param[in] LD
104*> \verbatim
105*>          LD is REAL array, dimension (N-1)
106*>           The n-1 elements L(i)*D(i).
107*> \endverbatim
108*>
109*> \param[in] LLD
110*> \verbatim
111*>          LLD is REAL array, dimension (N-1)
112*>           The n-1 elements L(i)*L(i)*D(i).
113*> \endverbatim
114*>
115*> \param[in] PIVMIN
116*> \verbatim
117*>          PIVMIN is REAL
118*>           The minimum pivot in the Sturm sequence.
119*> \endverbatim
120*>
121*> \param[in] GAPTOL
122*> \verbatim
123*>          GAPTOL is REAL
124*>           Tolerance that indicates when eigenvector entries are negligible
125*>           w.r.t. their contribution to the residual.
126*> \endverbatim
127*>
128*> \param[in,out] Z
129*> \verbatim
130*>          Z is COMPLEX array, dimension (N)
131*>           On input, all entries of Z must be set to 0.
132*>           On output, Z contains the (scaled) r-th column of the
133*>           inverse. The scaling is such that Z(R) equals 1.
134*> \endverbatim
135*>
136*> \param[in] WANTNC
137*> \verbatim
138*>          WANTNC is LOGICAL
139*>           Specifies whether NEGCNT has to be computed.
140*> \endverbatim
141*>
142*> \param[out] NEGCNT
143*> \verbatim
144*>          NEGCNT is INTEGER
145*>           If WANTNC is .TRUE. then NEGCNT = the number of pivots < pivmin
146*>           in the  matrix factorization L D L**T, and NEGCNT = -1 otherwise.
147*> \endverbatim
148*>
149*> \param[out] ZTZ
150*> \verbatim
151*>          ZTZ is REAL
152*>           The square of the 2-norm of Z.
153*> \endverbatim
154*>
155*> \param[out] MINGMA
156*> \verbatim
157*>          MINGMA is REAL
158*>           The reciprocal of the largest (in magnitude) diagonal
159*>           element of the inverse of L D L**T - sigma I.
160*> \endverbatim
161*>
162*> \param[in,out] R
163*> \verbatim
164*>          R is INTEGER
165*>           The twist index for the twisted factorization used to
166*>           compute Z.
167*>           On input, 0 <= R <= N. If R is input as 0, R is set to
168*>           the index where (L D L**T - sigma I)^{-1} is largest
169*>           in magnitude. If 1 <= R <= N, R is unchanged.
170*>           On output, R contains the twist index used to compute Z.
171*>           Ideally, R designates the position of the maximum entry in the
172*>           eigenvector.
173*> \endverbatim
174*>
175*> \param[out] ISUPPZ
176*> \verbatim
177*>          ISUPPZ is INTEGER array, dimension (2)
178*>           The support of the vector in Z, i.e., the vector Z is
179*>           nonzero only in elements ISUPPZ(1) through ISUPPZ( 2 ).
180*> \endverbatim
181*>
182*> \param[out] NRMINV
183*> \verbatim
184*>          NRMINV is REAL
185*>           NRMINV = 1/SQRT( ZTZ )
186*> \endverbatim
187*>
188*> \param[out] RESID
189*> \verbatim
190*>          RESID is REAL
191*>           The residual of the FP vector.
192*>           RESID = ABS( MINGMA )/SQRT( ZTZ )
193*> \endverbatim
194*>
195*> \param[out] RQCORR
196*> \verbatim
197*>          RQCORR is REAL
198*>           The Rayleigh Quotient correction to LAMBDA.
199*>           RQCORR = MINGMA*TMP
200*> \endverbatim
201*>
202*> \param[out] WORK
203*> \verbatim
204*>          WORK is REAL array, dimension (4*N)
205*> \endverbatim
206*
207*  Authors:
208*  ========
209*
210*> \author Univ. of Tennessee
211*> \author Univ. of California Berkeley
212*> \author Univ. of Colorado Denver
213*> \author NAG Ltd.
214*
215*> \ingroup complexOTHERauxiliary
216*
217*> \par Contributors:
218*  ==================
219*>
220*> Beresford Parlett, University of California, Berkeley, USA \n
221*> Jim Demmel, University of California, Berkeley, USA \n
222*> Inderjit Dhillon, University of Texas, Austin, USA \n
223*> Osni Marques, LBNL/NERSC, USA \n
224*> Christof Voemel, University of California, Berkeley, USA
225*
226*  =====================================================================
227      SUBROUTINE CLAR1V( N, B1, BN, LAMBDA, D, L, LD, LLD,
228     $           PIVMIN, GAPTOL, Z, WANTNC, NEGCNT, ZTZ, MINGMA,
229     $           R, ISUPPZ, NRMINV, RESID, RQCORR, WORK )
230*
231*  -- LAPACK auxiliary routine --
232*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
233*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
234*
235*     .. Scalar Arguments ..
236      LOGICAL            WANTNC
237      INTEGER   B1, BN, N, NEGCNT, R
238      REAL               GAPTOL, LAMBDA, MINGMA, NRMINV, PIVMIN, RESID,
239     $                   RQCORR, ZTZ
240*     ..
241*     .. Array Arguments ..
242      INTEGER            ISUPPZ( * )
243      REAL               D( * ), L( * ), LD( * ), LLD( * ),
244     $                  WORK( * )
245      COMPLEX          Z( * )
246*     ..
247*
248*  =====================================================================
249*
250*     .. Parameters ..
251      REAL               ZERO, ONE
252      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
253      COMPLEX            CONE
254      PARAMETER          ( CONE = ( 1.0E0, 0.0E0 ) )
255
256*     ..
257*     .. Local Scalars ..
258      LOGICAL            SAWNAN1, SAWNAN2
259      INTEGER            I, INDLPL, INDP, INDS, INDUMN, NEG1, NEG2, R1,
260     $                   R2
261      REAL               DMINUS, DPLUS, EPS, S, TMP
262*     ..
263*     .. External Functions ..
264      LOGICAL SISNAN
265      REAL               SLAMCH
266      EXTERNAL           SISNAN, SLAMCH
267*     ..
268*     .. Intrinsic Functions ..
269      INTRINSIC          ABS, REAL
270*     ..
271*     .. Executable Statements ..
272*
273      EPS = SLAMCH( 'Precision' )
274
275
276      IF( R.EQ.0 ) THEN
277         R1 = B1
278         R2 = BN
279      ELSE
280         R1 = R
281         R2 = R
282      END IF
283
284*     Storage for LPLUS
285      INDLPL = 0
286*     Storage for UMINUS
287      INDUMN = N
288      INDS = 2*N + 1
289      INDP = 3*N + 1
290
291      IF( B1.EQ.1 ) THEN
292         WORK( INDS ) = ZERO
293      ELSE
294         WORK( INDS+B1-1 ) = LLD( B1-1 )
295      END IF
296
297*
298*     Compute the stationary transform (using the differential form)
299*     until the index R2.
300*
301      SAWNAN1 = .FALSE.
302      NEG1 = 0
303      S = WORK( INDS+B1-1 ) - LAMBDA
304      DO 50 I = B1, R1 - 1
305         DPLUS = D( I ) + S
306         WORK( INDLPL+I ) = LD( I ) / DPLUS
307         IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
308         WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
309         S = WORK( INDS+I ) - LAMBDA
310 50   CONTINUE
311      SAWNAN1 = SISNAN( S )
312      IF( SAWNAN1 ) GOTO 60
313      DO 51 I = R1, R2 - 1
314         DPLUS = D( I ) + S
315         WORK( INDLPL+I ) = LD( I ) / DPLUS
316         WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
317         S = WORK( INDS+I ) - LAMBDA
318 51   CONTINUE
319      SAWNAN1 = SISNAN( S )
320*
321 60   CONTINUE
322      IF( SAWNAN1 ) THEN
323*        Runs a slower version of the above loop if a NaN is detected
324         NEG1 = 0
325         S = WORK( INDS+B1-1 ) - LAMBDA
326         DO 70 I = B1, R1 - 1
327            DPLUS = D( I ) + S
328            IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
329            WORK( INDLPL+I ) = LD( I ) / DPLUS
330            IF(DPLUS.LT.ZERO) NEG1 = NEG1 + 1
331            WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
332            IF( WORK( INDLPL+I ).EQ.ZERO )
333     $                      WORK( INDS+I ) = LLD( I )
334            S = WORK( INDS+I ) - LAMBDA
335 70      CONTINUE
336         DO 71 I = R1, R2 - 1
337            DPLUS = D( I ) + S
338            IF(ABS(DPLUS).LT.PIVMIN) DPLUS = -PIVMIN
339            WORK( INDLPL+I ) = LD( I ) / DPLUS
340            WORK( INDS+I ) = S*WORK( INDLPL+I )*L( I )
341            IF( WORK( INDLPL+I ).EQ.ZERO )
342     $                      WORK( INDS+I ) = LLD( I )
343            S = WORK( INDS+I ) - LAMBDA
344 71      CONTINUE
345      END IF
346*
347*     Compute the progressive transform (using the differential form)
348*     until the index R1
349*
350      SAWNAN2 = .FALSE.
351      NEG2 = 0
352      WORK( INDP+BN-1 ) = D( BN ) - LAMBDA
353      DO 80 I = BN - 1, R1, -1
354         DMINUS = LLD( I ) + WORK( INDP+I )
355         TMP = D( I ) / DMINUS
356         IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
357         WORK( INDUMN+I ) = L( I )*TMP
358         WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
359 80   CONTINUE
360      TMP = WORK( INDP+R1-1 )
361      SAWNAN2 = SISNAN( TMP )
362
363      IF( SAWNAN2 ) THEN
364*        Runs a slower version of the above loop if a NaN is detected
365         NEG2 = 0
366         DO 100 I = BN-1, R1, -1
367            DMINUS = LLD( I ) + WORK( INDP+I )
368            IF(ABS(DMINUS).LT.PIVMIN) DMINUS = -PIVMIN
369            TMP = D( I ) / DMINUS
370            IF(DMINUS.LT.ZERO) NEG2 = NEG2 + 1
371            WORK( INDUMN+I ) = L( I )*TMP
372            WORK( INDP+I-1 ) = WORK( INDP+I )*TMP - LAMBDA
373            IF( TMP.EQ.ZERO )
374     $          WORK( INDP+I-1 ) = D( I ) - LAMBDA
375 100     CONTINUE
376      END IF
377*
378*     Find the index (from R1 to R2) of the largest (in magnitude)
379*     diagonal element of the inverse
380*
381      MINGMA = WORK( INDS+R1-1 ) + WORK( INDP+R1-1 )
382      IF( MINGMA.LT.ZERO ) NEG1 = NEG1 + 1
383      IF( WANTNC ) THEN
384         NEGCNT = NEG1 + NEG2
385      ELSE
386         NEGCNT = -1
387      ENDIF
388      IF( ABS(MINGMA).EQ.ZERO )
389     $   MINGMA = EPS*WORK( INDS+R1-1 )
390      R = R1
391      DO 110 I = R1, R2 - 1
392         TMP = WORK( INDS+I ) + WORK( INDP+I )
393         IF( TMP.EQ.ZERO )
394     $      TMP = EPS*WORK( INDS+I )
395         IF( ABS( TMP ).LE.ABS( MINGMA ) ) THEN
396            MINGMA = TMP
397            R = I + 1
398         END IF
399 110  CONTINUE
400*
401*     Compute the FP vector: solve N^T v = e_r
402*
403      ISUPPZ( 1 ) = B1
404      ISUPPZ( 2 ) = BN
405      Z( R ) = CONE
406      ZTZ = ONE
407*
408*     Compute the FP vector upwards from R
409*
410      IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN
411         DO 210 I = R-1, B1, -1
412            Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
413            IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
414     $           THEN
415               Z( I ) = ZERO
416               ISUPPZ( 1 ) = I + 1
417               GOTO 220
418            ENDIF
419            ZTZ = ZTZ + REAL( Z( I )*Z( I ) )
420 210     CONTINUE
421 220     CONTINUE
422      ELSE
423*        Run slower loop if NaN occurred.
424         DO 230 I = R - 1, B1, -1
425            IF( Z( I+1 ).EQ.ZERO ) THEN
426               Z( I ) = -( LD( I+1 ) / LD( I ) )*Z( I+2 )
427            ELSE
428               Z( I ) = -( WORK( INDLPL+I )*Z( I+1 ) )
429            END IF
430            IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
431     $           THEN
432               Z( I ) = ZERO
433               ISUPPZ( 1 ) = I + 1
434               GO TO 240
435            END IF
436            ZTZ = ZTZ + REAL( Z( I )*Z( I ) )
437 230     CONTINUE
438 240     CONTINUE
439      ENDIF
440
441*     Compute the FP vector downwards from R in blocks of size BLKSIZ
442      IF( .NOT.SAWNAN1 .AND. .NOT.SAWNAN2 ) THEN
443         DO 250 I = R, BN-1
444            Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) )
445            IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
446     $         THEN
447               Z( I+1 ) = ZERO
448               ISUPPZ( 2 ) = I
449               GO TO 260
450            END IF
451            ZTZ = ZTZ + REAL( Z( I+1 )*Z( I+1 ) )
452 250     CONTINUE
453 260     CONTINUE
454      ELSE
455*        Run slower loop if NaN occurred.
456         DO 270 I = R, BN - 1
457            IF( Z( I ).EQ.ZERO ) THEN
458               Z( I+1 ) = -( LD( I-1 ) / LD( I ) )*Z( I-1 )
459            ELSE
460               Z( I+1 ) = -( WORK( INDUMN+I )*Z( I ) )
461            END IF
462            IF( (ABS(Z(I))+ABS(Z(I+1)))* ABS(LD(I)).LT.GAPTOL )
463     $           THEN
464               Z( I+1 ) = ZERO
465               ISUPPZ( 2 ) = I
466               GO TO 280
467            END IF
468            ZTZ = ZTZ + REAL( Z( I+1 )*Z( I+1 ) )
469 270     CONTINUE
470 280     CONTINUE
471      END IF
472*
473*     Compute quantities for convergence test
474*
475      TMP = ONE / ZTZ
476      NRMINV = SQRT( TMP )
477      RESID = ABS( MINGMA )*NRMINV
478      RQCORR = MINGMA*TMP
479*
480*
481      RETURN
482*
483*     End of CLAR1V
484*
485      END
486