1*> \brief \b CLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLATRS + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clatrs.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clatrs.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clatrs.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
22*                          CNORM, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          DIAG, NORMIN, TRANS, UPLO
26*       INTEGER            INFO, LDA, N
27*       REAL               SCALE
28*       ..
29*       .. Array Arguments ..
30*       REAL               CNORM( * )
31*       COMPLEX            A( LDA, * ), X( * )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*> CLATRS solves one of the triangular systems
41*>
42*>    A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b,
43*>
44*> with scaling to prevent overflow.  Here A is an upper or lower
45*> triangular matrix, A**T denotes the transpose of A, A**H denotes the
46*> conjugate transpose of A, x and b are n-element vectors, and s is a
47*> scaling factor, usually less than or equal to 1, chosen so that the
48*> components of x will be less than the overflow threshold.  If the
49*> unscaled problem will not cause overflow, the Level 2 BLAS routine
50*> CTRSV is called. If the matrix A is singular (A(j,j) = 0 for some j),
51*> then s is set to 0 and a non-trivial solution to A*x = 0 is returned.
52*> \endverbatim
53*
54*  Arguments:
55*  ==========
56*
57*> \param[in] UPLO
58*> \verbatim
59*>          UPLO is CHARACTER*1
60*>          Specifies whether the matrix A is upper or lower triangular.
61*>          = 'U':  Upper triangular
62*>          = 'L':  Lower triangular
63*> \endverbatim
64*>
65*> \param[in] TRANS
66*> \verbatim
67*>          TRANS is CHARACTER*1
68*>          Specifies the operation applied to A.
69*>          = 'N':  Solve A * x = s*b     (No transpose)
70*>          = 'T':  Solve A**T * x = s*b  (Transpose)
71*>          = 'C':  Solve A**H * x = s*b  (Conjugate transpose)
72*> \endverbatim
73*>
74*> \param[in] DIAG
75*> \verbatim
76*>          DIAG is CHARACTER*1
77*>          Specifies whether or not the matrix A is unit triangular.
78*>          = 'N':  Non-unit triangular
79*>          = 'U':  Unit triangular
80*> \endverbatim
81*>
82*> \param[in] NORMIN
83*> \verbatim
84*>          NORMIN is CHARACTER*1
85*>          Specifies whether CNORM has been set or not.
86*>          = 'Y':  CNORM contains the column norms on entry
87*>          = 'N':  CNORM is not set on entry.  On exit, the norms will
88*>                  be computed and stored in CNORM.
89*> \endverbatim
90*>
91*> \param[in] N
92*> \verbatim
93*>          N is INTEGER
94*>          The order of the matrix A.  N >= 0.
95*> \endverbatim
96*>
97*> \param[in] A
98*> \verbatim
99*>          A is COMPLEX array, dimension (LDA,N)
100*>          The triangular matrix A.  If UPLO = 'U', the leading n by n
101*>          upper triangular part of the array A contains the upper
102*>          triangular matrix, and the strictly lower triangular part of
103*>          A is not referenced.  If UPLO = 'L', the leading n by n lower
104*>          triangular part of the array A contains the lower triangular
105*>          matrix, and the strictly upper triangular part of A is not
106*>          referenced.  If DIAG = 'U', the diagonal elements of A are
107*>          also not referenced and are assumed to be 1.
108*> \endverbatim
109*>
110*> \param[in] LDA
111*> \verbatim
112*>          LDA is INTEGER
113*>          The leading dimension of the array A.  LDA >= max (1,N).
114*> \endverbatim
115*>
116*> \param[in,out] X
117*> \verbatim
118*>          X is COMPLEX array, dimension (N)
119*>          On entry, the right hand side b of the triangular system.
120*>          On exit, X is overwritten by the solution vector x.
121*> \endverbatim
122*>
123*> \param[out] SCALE
124*> \verbatim
125*>          SCALE is REAL
126*>          The scaling factor s for the triangular system
127*>             A * x = s*b,  A**T * x = s*b,  or  A**H * x = s*b.
128*>          If SCALE = 0, the matrix A is singular or badly scaled, and
129*>          the vector x is an exact or approximate solution to A*x = 0.
130*> \endverbatim
131*>
132*> \param[in,out] CNORM
133*> \verbatim
134*>          CNORM is REAL array, dimension (N)
135*>
136*>          If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
137*>          contains the norm of the off-diagonal part of the j-th column
138*>          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal
139*>          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
140*>          must be greater than or equal to the 1-norm.
141*>
142*>          If NORMIN = 'N', CNORM is an output argument and CNORM(j)
143*>          returns the 1-norm of the offdiagonal part of the j-th column
144*>          of A.
145*> \endverbatim
146*>
147*> \param[out] INFO
148*> \verbatim
149*>          INFO is INTEGER
150*>          = 0:  successful exit
151*>          < 0:  if INFO = -k, the k-th argument had an illegal value
152*> \endverbatim
153*
154*  Authors:
155*  ========
156*
157*> \author Univ. of Tennessee
158*> \author Univ. of California Berkeley
159*> \author Univ. of Colorado Denver
160*> \author NAG Ltd.
161*
162*> \ingroup complexOTHERauxiliary
163*
164*> \par Further Details:
165*  =====================
166*>
167*> \verbatim
168*>
169*>  A rough bound on x is computed; if that is less than overflow, CTRSV
170*>  is called, otherwise, specific code is used which checks for possible
171*>  overflow or divide-by-zero at every operation.
172*>
173*>  A columnwise scheme is used for solving A*x = b.  The basic algorithm
174*>  if A is lower triangular is
175*>
176*>       x[1:n] := b[1:n]
177*>       for j = 1, ..., n
178*>            x(j) := x(j) / A(j,j)
179*>            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
180*>       end
181*>
182*>  Define bounds on the components of x after j iterations of the loop:
183*>     M(j) = bound on x[1:j]
184*>     G(j) = bound on x[j+1:n]
185*>  Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
186*>
187*>  Then for iteration j+1 we have
188*>     M(j+1) <= G(j) / | A(j+1,j+1) |
189*>     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
190*>            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
191*>
192*>  where CNORM(j+1) is greater than or equal to the infinity-norm of
193*>  column j+1 of A, not counting the diagonal.  Hence
194*>
195*>     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
196*>                  1<=i<=j
197*>  and
198*>
199*>     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
200*>                                   1<=i< j
201*>
202*>  Since |x(j)| <= M(j), we use the Level 2 BLAS routine CTRSV if the
203*>  reciprocal of the largest M(j), j=1,..,n, is larger than
204*>  max(underflow, 1/overflow).
205*>
206*>  The bound on x(j) is also used to determine when a step in the
207*>  columnwise method can be performed without fear of overflow.  If
208*>  the computed bound is greater than a large constant, x is scaled to
209*>  prevent overflow, but if the bound overflows, x is set to 0, x(j) to
210*>  1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
211*>
212*>  Similarly, a row-wise scheme is used to solve A**T *x = b  or
213*>  A**H *x = b.  The basic algorithm for A upper triangular is
214*>
215*>       for j = 1, ..., n
216*>            x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
217*>       end
218*>
219*>  We simultaneously compute two bounds
220*>       G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
221*>       M(j) = bound on x(i), 1<=i<=j
222*>
223*>  The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
224*>  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
225*>  Then the bound on x(j) is
226*>
227*>       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
228*>
229*>            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
230*>                      1<=i<=j
231*>
232*>  and we can safely call CTRSV if 1/M(n) and 1/G(n) are both greater
233*>  than max(underflow, 1/overflow).
234*> \endverbatim
235*>
236*  =====================================================================
237      SUBROUTINE CLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE,
238     $                   CNORM, INFO )
239*
240*  -- LAPACK auxiliary routine --
241*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
242*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
243*
244*     .. Scalar Arguments ..
245      CHARACTER          DIAG, NORMIN, TRANS, UPLO
246      INTEGER            INFO, LDA, N
247      REAL               SCALE
248*     ..
249*     .. Array Arguments ..
250      REAL               CNORM( * )
251      COMPLEX            A( LDA, * ), X( * )
252*     ..
253*
254*  =====================================================================
255*
256*     .. Parameters ..
257      REAL               ZERO, HALF, ONE, TWO
258      PARAMETER          ( ZERO = 0.0E+0, HALF = 0.5E+0, ONE = 1.0E+0,
259     $                   TWO = 2.0E+0 )
260*     ..
261*     .. Local Scalars ..
262      LOGICAL            NOTRAN, NOUNIT, UPPER
263      INTEGER            I, IMAX, J, JFIRST, JINC, JLAST
264      REAL               BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
265     $                   XBND, XJ, XMAX
266      COMPLEX            CSUMJ, TJJS, USCAL, ZDUM
267*     ..
268*     .. External Functions ..
269      LOGICAL            LSAME
270      INTEGER            ICAMAX, ISAMAX
271      REAL               SCASUM, SLAMCH
272      COMPLEX            CDOTC, CDOTU, CLADIV
273      EXTERNAL           LSAME, ICAMAX, ISAMAX, SCASUM, SLAMCH, CDOTC,
274     $                   CDOTU, CLADIV
275*     ..
276*     .. External Subroutines ..
277      EXTERNAL           CAXPY, CSSCAL, CTRSV, SLABAD, SSCAL, XERBLA
278*     ..
279*     .. Intrinsic Functions ..
280      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
281*     ..
282*     .. Statement Functions ..
283      REAL               CABS1, CABS2
284*     ..
285*     .. Statement Function definitions ..
286      CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
287      CABS2( ZDUM ) = ABS( REAL( ZDUM ) / 2. ) +
288     $                ABS( AIMAG( ZDUM ) / 2. )
289*     ..
290*     .. Executable Statements ..
291*
292      INFO = 0
293      UPPER = LSAME( UPLO, 'U' )
294      NOTRAN = LSAME( TRANS, 'N' )
295      NOUNIT = LSAME( DIAG, 'N' )
296*
297*     Test the input parameters.
298*
299      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
300         INFO = -1
301      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
302     $         LSAME( TRANS, 'C' ) ) THEN
303         INFO = -2
304      ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
305         INFO = -3
306      ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
307     $         LSAME( NORMIN, 'N' ) ) THEN
308         INFO = -4
309      ELSE IF( N.LT.0 ) THEN
310         INFO = -5
311      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
312         INFO = -7
313      END IF
314      IF( INFO.NE.0 ) THEN
315         CALL XERBLA( 'CLATRS', -INFO )
316         RETURN
317      END IF
318*
319*     Quick return if possible
320*
321      IF( N.EQ.0 )
322     $   RETURN
323*
324*     Determine machine dependent parameters to control overflow.
325*
326      SMLNUM = SLAMCH( 'Safe minimum' )
327      BIGNUM = ONE / SMLNUM
328      CALL SLABAD( SMLNUM, BIGNUM )
329      SMLNUM = SMLNUM / SLAMCH( 'Precision' )
330      BIGNUM = ONE / SMLNUM
331      SCALE = ONE
332*
333      IF( LSAME( NORMIN, 'N' ) ) THEN
334*
335*        Compute the 1-norm of each column, not including the diagonal.
336*
337         IF( UPPER ) THEN
338*
339*           A is upper triangular.
340*
341            DO 10 J = 1, N
342               CNORM( J ) = SCASUM( J-1, A( 1, J ), 1 )
343   10       CONTINUE
344         ELSE
345*
346*           A is lower triangular.
347*
348            DO 20 J = 1, N - 1
349               CNORM( J ) = SCASUM( N-J, A( J+1, J ), 1 )
350   20       CONTINUE
351            CNORM( N ) = ZERO
352         END IF
353      END IF
354*
355*     Scale the column norms by TSCAL if the maximum element in CNORM is
356*     greater than BIGNUM/2.
357*
358      IMAX = ISAMAX( N, CNORM, 1 )
359      TMAX = CNORM( IMAX )
360      IF( TMAX.LE.BIGNUM*HALF ) THEN
361         TSCAL = ONE
362      ELSE
363         TSCAL = HALF / ( SMLNUM*TMAX )
364         CALL SSCAL( N, TSCAL, CNORM, 1 )
365      END IF
366*
367*     Compute a bound on the computed solution vector to see if the
368*     Level 2 BLAS routine CTRSV can be used.
369*
370      XMAX = ZERO
371      DO 30 J = 1, N
372         XMAX = MAX( XMAX, CABS2( X( J ) ) )
373   30 CONTINUE
374      XBND = XMAX
375*
376      IF( NOTRAN ) THEN
377*
378*        Compute the growth in A * x = b.
379*
380         IF( UPPER ) THEN
381            JFIRST = N
382            JLAST = 1
383            JINC = -1
384         ELSE
385            JFIRST = 1
386            JLAST = N
387            JINC = 1
388         END IF
389*
390         IF( TSCAL.NE.ONE ) THEN
391            GROW = ZERO
392            GO TO 60
393         END IF
394*
395         IF( NOUNIT ) THEN
396*
397*           A is non-unit triangular.
398*
399*           Compute GROW = 1/G(j) and XBND = 1/M(j).
400*           Initially, G(0) = max{x(i), i=1,...,n}.
401*
402            GROW = HALF / MAX( XBND, SMLNUM )
403            XBND = GROW
404            DO 40 J = JFIRST, JLAST, JINC
405*
406*              Exit the loop if the growth factor is too small.
407*
408               IF( GROW.LE.SMLNUM )
409     $            GO TO 60
410*
411               TJJS = A( J, J )
412               TJJ = CABS1( TJJS )
413*
414               IF( TJJ.GE.SMLNUM ) THEN
415*
416*                 M(j) = G(j-1) / abs(A(j,j))
417*
418                  XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
419               ELSE
420*
421*                 M(j) could overflow, set XBND to 0.
422*
423                  XBND = ZERO
424               END IF
425*
426               IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
427*
428*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
429*
430                  GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
431               ELSE
432*
433*                 G(j) could overflow, set GROW to 0.
434*
435                  GROW = ZERO
436               END IF
437   40       CONTINUE
438            GROW = XBND
439         ELSE
440*
441*           A is unit triangular.
442*
443*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
444*
445            GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
446            DO 50 J = JFIRST, JLAST, JINC
447*
448*              Exit the loop if the growth factor is too small.
449*
450               IF( GROW.LE.SMLNUM )
451     $            GO TO 60
452*
453*              G(j) = G(j-1)*( 1 + CNORM(j) )
454*
455               GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
456   50       CONTINUE
457         END IF
458   60    CONTINUE
459*
460      ELSE
461*
462*        Compute the growth in A**T * x = b  or  A**H * x = b.
463*
464         IF( UPPER ) THEN
465            JFIRST = 1
466            JLAST = N
467            JINC = 1
468         ELSE
469            JFIRST = N
470            JLAST = 1
471            JINC = -1
472         END IF
473*
474         IF( TSCAL.NE.ONE ) THEN
475            GROW = ZERO
476            GO TO 90
477         END IF
478*
479         IF( NOUNIT ) THEN
480*
481*           A is non-unit triangular.
482*
483*           Compute GROW = 1/G(j) and XBND = 1/M(j).
484*           Initially, M(0) = max{x(i), i=1,...,n}.
485*
486            GROW = HALF / MAX( XBND, SMLNUM )
487            XBND = GROW
488            DO 70 J = JFIRST, JLAST, JINC
489*
490*              Exit the loop if the growth factor is too small.
491*
492               IF( GROW.LE.SMLNUM )
493     $            GO TO 90
494*
495*              G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
496*
497               XJ = ONE + CNORM( J )
498               GROW = MIN( GROW, XBND / XJ )
499*
500               TJJS = A( J, J )
501               TJJ = CABS1( TJJS )
502*
503               IF( TJJ.GE.SMLNUM ) THEN
504*
505*                 M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
506*
507                  IF( XJ.GT.TJJ )
508     $               XBND = XBND*( TJJ / XJ )
509               ELSE
510*
511*                 M(j) could overflow, set XBND to 0.
512*
513                  XBND = ZERO
514               END IF
515   70       CONTINUE
516            GROW = MIN( GROW, XBND )
517         ELSE
518*
519*           A is unit triangular.
520*
521*           Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
522*
523            GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
524            DO 80 J = JFIRST, JLAST, JINC
525*
526*              Exit the loop if the growth factor is too small.
527*
528               IF( GROW.LE.SMLNUM )
529     $            GO TO 90
530*
531*              G(j) = ( 1 + CNORM(j) )*G(j-1)
532*
533               XJ = ONE + CNORM( J )
534               GROW = GROW / XJ
535   80       CONTINUE
536         END IF
537   90    CONTINUE
538      END IF
539*
540      IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
541*
542*        Use the Level 2 BLAS solve if the reciprocal of the bound on
543*        elements of X is not too small.
544*
545         CALL CTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 )
546      ELSE
547*
548*        Use a Level 1 BLAS solve, scaling intermediate results.
549*
550         IF( XMAX.GT.BIGNUM*HALF ) THEN
551*
552*           Scale X so that its components are less than or equal to
553*           BIGNUM in absolute value.
554*
555            SCALE = ( BIGNUM*HALF ) / XMAX
556            CALL CSSCAL( N, SCALE, X, 1 )
557            XMAX = BIGNUM
558         ELSE
559            XMAX = XMAX*TWO
560         END IF
561*
562         IF( NOTRAN ) THEN
563*
564*           Solve A * x = b
565*
566            DO 110 J = JFIRST, JLAST, JINC
567*
568*              Compute x(j) = b(j) / A(j,j), scaling x if necessary.
569*
570               XJ = CABS1( X( J ) )
571               IF( NOUNIT ) THEN
572                  TJJS = A( J, J )*TSCAL
573               ELSE
574                  TJJS = TSCAL
575                  IF( TSCAL.EQ.ONE )
576     $               GO TO 105
577               END IF
578                  TJJ = CABS1( TJJS )
579                  IF( TJJ.GT.SMLNUM ) THEN
580*
581*                    abs(A(j,j)) > SMLNUM:
582*
583                     IF( TJJ.LT.ONE ) THEN
584                        IF( XJ.GT.TJJ*BIGNUM ) THEN
585*
586*                          Scale x by 1/b(j).
587*
588                           REC = ONE / XJ
589                           CALL CSSCAL( N, REC, X, 1 )
590                           SCALE = SCALE*REC
591                           XMAX = XMAX*REC
592                        END IF
593                     END IF
594                     X( J ) = CLADIV( X( J ), TJJS )
595                     XJ = CABS1( X( J ) )
596                  ELSE IF( TJJ.GT.ZERO ) THEN
597*
598*                    0 < abs(A(j,j)) <= SMLNUM:
599*
600                     IF( XJ.GT.TJJ*BIGNUM ) THEN
601*
602*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
603*                       to avoid overflow when dividing by A(j,j).
604*
605                        REC = ( TJJ*BIGNUM ) / XJ
606                        IF( CNORM( J ).GT.ONE ) THEN
607*
608*                          Scale by 1/CNORM(j) to avoid overflow when
609*                          multiplying x(j) times column j.
610*
611                           REC = REC / CNORM( J )
612                        END IF
613                        CALL CSSCAL( N, REC, X, 1 )
614                        SCALE = SCALE*REC
615                        XMAX = XMAX*REC
616                     END IF
617                     X( J ) = CLADIV( X( J ), TJJS )
618                     XJ = CABS1( X( J ) )
619                  ELSE
620*
621*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
622*                    scale = 0, and compute a solution to A*x = 0.
623*
624                     DO 100 I = 1, N
625                        X( I ) = ZERO
626  100                CONTINUE
627                     X( J ) = ONE
628                     XJ = ONE
629                     SCALE = ZERO
630                     XMAX = ZERO
631                  END IF
632  105          CONTINUE
633*
634*              Scale x if necessary to avoid overflow when adding a
635*              multiple of column j of A.
636*
637               IF( XJ.GT.ONE ) THEN
638                  REC = ONE / XJ
639                  IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
640*
641*                    Scale x by 1/(2*abs(x(j))).
642*
643                     REC = REC*HALF
644                     CALL CSSCAL( N, REC, X, 1 )
645                     SCALE = SCALE*REC
646                  END IF
647               ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
648*
649*                 Scale x by 1/2.
650*
651                  CALL CSSCAL( N, HALF, X, 1 )
652                  SCALE = SCALE*HALF
653               END IF
654*
655               IF( UPPER ) THEN
656                  IF( J.GT.1 ) THEN
657*
658*                    Compute the update
659*                       x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
660*
661                     CALL CAXPY( J-1, -X( J )*TSCAL, A( 1, J ), 1, X,
662     $                           1 )
663                     I = ICAMAX( J-1, X, 1 )
664                     XMAX = CABS1( X( I ) )
665                  END IF
666               ELSE
667                  IF( J.LT.N ) THEN
668*
669*                    Compute the update
670*                       x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
671*
672                     CALL CAXPY( N-J, -X( J )*TSCAL, A( J+1, J ), 1,
673     $                           X( J+1 ), 1 )
674                     I = J + ICAMAX( N-J, X( J+1 ), 1 )
675                     XMAX = CABS1( X( I ) )
676                  END IF
677               END IF
678  110       CONTINUE
679*
680         ELSE IF( LSAME( TRANS, 'T' ) ) THEN
681*
682*           Solve A**T * x = b
683*
684            DO 150 J = JFIRST, JLAST, JINC
685*
686*              Compute x(j) = b(j) - sum A(k,j)*x(k).
687*                                    k<>j
688*
689               XJ = CABS1( X( J ) )
690               USCAL = TSCAL
691               REC = ONE / MAX( XMAX, ONE )
692               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
693*
694*                 If x(j) could overflow, scale x by 1/(2*XMAX).
695*
696                  REC = REC*HALF
697                  IF( NOUNIT ) THEN
698                     TJJS = A( J, J )*TSCAL
699                  ELSE
700                     TJJS = TSCAL
701                  END IF
702                     TJJ = CABS1( TJJS )
703                     IF( TJJ.GT.ONE ) THEN
704*
705*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
706*
707                        REC = MIN( ONE, REC*TJJ )
708                        USCAL = CLADIV( USCAL, TJJS )
709                     END IF
710                  IF( REC.LT.ONE ) THEN
711                     CALL CSSCAL( N, REC, X, 1 )
712                     SCALE = SCALE*REC
713                     XMAX = XMAX*REC
714                  END IF
715               END IF
716*
717               CSUMJ = ZERO
718               IF( USCAL.EQ.CMPLX( ONE ) ) THEN
719*
720*                 If the scaling needed for A in the dot product is 1,
721*                 call CDOTU to perform the dot product.
722*
723                  IF( UPPER ) THEN
724                     CSUMJ = CDOTU( J-1, A( 1, J ), 1, X, 1 )
725                  ELSE IF( J.LT.N ) THEN
726                     CSUMJ = CDOTU( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
727                  END IF
728               ELSE
729*
730*                 Otherwise, use in-line code for the dot product.
731*
732                  IF( UPPER ) THEN
733                     DO 120 I = 1, J - 1
734                        CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
735  120                CONTINUE
736                  ELSE IF( J.LT.N ) THEN
737                     DO 130 I = J + 1, N
738                        CSUMJ = CSUMJ + ( A( I, J )*USCAL )*X( I )
739  130                CONTINUE
740                  END IF
741               END IF
742*
743               IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
744*
745*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
746*                 was not used to scale the dotproduct.
747*
748                  X( J ) = X( J ) - CSUMJ
749                  XJ = CABS1( X( J ) )
750                  IF( NOUNIT ) THEN
751                     TJJS = A( J, J )*TSCAL
752                  ELSE
753                     TJJS = TSCAL
754                     IF( TSCAL.EQ.ONE )
755     $                  GO TO 145
756                  END IF
757*
758*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
759*
760                     TJJ = CABS1( TJJS )
761                     IF( TJJ.GT.SMLNUM ) THEN
762*
763*                       abs(A(j,j)) > SMLNUM:
764*
765                        IF( TJJ.LT.ONE ) THEN
766                           IF( XJ.GT.TJJ*BIGNUM ) THEN
767*
768*                             Scale X by 1/abs(x(j)).
769*
770                              REC = ONE / XJ
771                              CALL CSSCAL( N, REC, X, 1 )
772                              SCALE = SCALE*REC
773                              XMAX = XMAX*REC
774                           END IF
775                        END IF
776                        X( J ) = CLADIV( X( J ), TJJS )
777                     ELSE IF( TJJ.GT.ZERO ) THEN
778*
779*                       0 < abs(A(j,j)) <= SMLNUM:
780*
781                        IF( XJ.GT.TJJ*BIGNUM ) THEN
782*
783*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
784*
785                           REC = ( TJJ*BIGNUM ) / XJ
786                           CALL CSSCAL( N, REC, X, 1 )
787                           SCALE = SCALE*REC
788                           XMAX = XMAX*REC
789                        END IF
790                        X( J ) = CLADIV( X( J ), TJJS )
791                     ELSE
792*
793*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
794*                       scale = 0 and compute a solution to A**T *x = 0.
795*
796                        DO 140 I = 1, N
797                           X( I ) = ZERO
798  140                   CONTINUE
799                        X( J ) = ONE
800                        SCALE = ZERO
801                        XMAX = ZERO
802                     END IF
803  145             CONTINUE
804               ELSE
805*
806*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
807*                 product has already been divided by 1/A(j,j).
808*
809                  X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
810               END IF
811               XMAX = MAX( XMAX, CABS1( X( J ) ) )
812  150       CONTINUE
813*
814         ELSE
815*
816*           Solve A**H * x = b
817*
818            DO 190 J = JFIRST, JLAST, JINC
819*
820*              Compute x(j) = b(j) - sum A(k,j)*x(k).
821*                                    k<>j
822*
823               XJ = CABS1( X( J ) )
824               USCAL = TSCAL
825               REC = ONE / MAX( XMAX, ONE )
826               IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
827*
828*                 If x(j) could overflow, scale x by 1/(2*XMAX).
829*
830                  REC = REC*HALF
831                  IF( NOUNIT ) THEN
832                     TJJS = CONJG( A( J, J ) )*TSCAL
833                  ELSE
834                     TJJS = TSCAL
835                  END IF
836                     TJJ = CABS1( TJJS )
837                     IF( TJJ.GT.ONE ) THEN
838*
839*                       Divide by A(j,j) when scaling x if A(j,j) > 1.
840*
841                        REC = MIN( ONE, REC*TJJ )
842                        USCAL = CLADIV( USCAL, TJJS )
843                     END IF
844                  IF( REC.LT.ONE ) THEN
845                     CALL CSSCAL( N, REC, X, 1 )
846                     SCALE = SCALE*REC
847                     XMAX = XMAX*REC
848                  END IF
849               END IF
850*
851               CSUMJ = ZERO
852               IF( USCAL.EQ.CMPLX( ONE ) ) THEN
853*
854*                 If the scaling needed for A in the dot product is 1,
855*                 call CDOTC to perform the dot product.
856*
857                  IF( UPPER ) THEN
858                     CSUMJ = CDOTC( J-1, A( 1, J ), 1, X, 1 )
859                  ELSE IF( J.LT.N ) THEN
860                     CSUMJ = CDOTC( N-J, A( J+1, J ), 1, X( J+1 ), 1 )
861                  END IF
862               ELSE
863*
864*                 Otherwise, use in-line code for the dot product.
865*
866                  IF( UPPER ) THEN
867                     DO 160 I = 1, J - 1
868                        CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
869     $                          X( I )
870  160                CONTINUE
871                  ELSE IF( J.LT.N ) THEN
872                     DO 170 I = J + 1, N
873                        CSUMJ = CSUMJ + ( CONJG( A( I, J ) )*USCAL )*
874     $                          X( I )
875  170                CONTINUE
876                  END IF
877               END IF
878*
879               IF( USCAL.EQ.CMPLX( TSCAL ) ) THEN
880*
881*                 Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
882*                 was not used to scale the dotproduct.
883*
884                  X( J ) = X( J ) - CSUMJ
885                  XJ = CABS1( X( J ) )
886                  IF( NOUNIT ) THEN
887                     TJJS = CONJG( A( J, J ) )*TSCAL
888                  ELSE
889                     TJJS = TSCAL
890                     IF( TSCAL.EQ.ONE )
891     $                  GO TO 185
892                  END IF
893*
894*                    Compute x(j) = x(j) / A(j,j), scaling if necessary.
895*
896                     TJJ = CABS1( TJJS )
897                     IF( TJJ.GT.SMLNUM ) THEN
898*
899*                       abs(A(j,j)) > SMLNUM:
900*
901                        IF( TJJ.LT.ONE ) THEN
902                           IF( XJ.GT.TJJ*BIGNUM ) THEN
903*
904*                             Scale X by 1/abs(x(j)).
905*
906                              REC = ONE / XJ
907                              CALL CSSCAL( N, REC, X, 1 )
908                              SCALE = SCALE*REC
909                              XMAX = XMAX*REC
910                           END IF
911                        END IF
912                        X( J ) = CLADIV( X( J ), TJJS )
913                     ELSE IF( TJJ.GT.ZERO ) THEN
914*
915*                       0 < abs(A(j,j)) <= SMLNUM:
916*
917                        IF( XJ.GT.TJJ*BIGNUM ) THEN
918*
919*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
920*
921                           REC = ( TJJ*BIGNUM ) / XJ
922                           CALL CSSCAL( N, REC, X, 1 )
923                           SCALE = SCALE*REC
924                           XMAX = XMAX*REC
925                        END IF
926                        X( J ) = CLADIV( X( J ), TJJS )
927                     ELSE
928*
929*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and
930*                       scale = 0 and compute a solution to A**H *x = 0.
931*
932                        DO 180 I = 1, N
933                           X( I ) = ZERO
934  180                   CONTINUE
935                        X( J ) = ONE
936                        SCALE = ZERO
937                        XMAX = ZERO
938                     END IF
939  185             CONTINUE
940               ELSE
941*
942*                 Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
943*                 product has already been divided by 1/A(j,j).
944*
945                  X( J ) = CLADIV( X( J ), TJJS ) - CSUMJ
946               END IF
947               XMAX = MAX( XMAX, CABS1( X( J ) ) )
948  190       CONTINUE
949         END IF
950         SCALE = SCALE / TSCAL
951      END IF
952*
953*     Scale the column norms by 1/TSCAL for return.
954*
955      IF( TSCAL.NE.ONE ) THEN
956         CALL SSCAL( N, ONE / TSCAL, CNORM, 1 )
957      END IF
958*
959      RETURN
960*
961*     End of CLATRS
962*
963      END
964