1*> \brief \b DLAMTSQR 2* 3* Definition: 4* =========== 5* 6* SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, 7* $ LDT, C, LDC, WORK, LWORK, INFO ) 8* 9* 10* .. Scalar Arguments .. 11* CHARACTER SIDE, TRANS 12* INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC 13* .. 14* .. Array Arguments .. 15* DOUBLE A( LDA, * ), WORK( * ), C(LDC, * ), 16* $ T( LDT, * ) 17*> \par Purpose: 18* ============= 19*> 20*> \verbatim 21*> 22*> DLAMTSQR overwrites the general real M-by-N matrix C with 23*> 24*> 25*> SIDE = 'L' SIDE = 'R' 26*> TRANS = 'N': Q * C C * Q 27*> TRANS = 'T': Q**T * C C * Q**T 28*> where Q is a real orthogonal matrix defined as the product 29*> of blocked elementary reflectors computed by tall skinny 30*> QR factorization (DLATSQR) 31*> \endverbatim 32* 33* Arguments: 34* ========== 35* 36*> \param[in] SIDE 37*> \verbatim 38*> SIDE is CHARACTER*1 39*> = 'L': apply Q or Q**T from the Left; 40*> = 'R': apply Q or Q**T from the Right. 41*> \endverbatim 42*> 43*> \param[in] TRANS 44*> \verbatim 45*> TRANS is CHARACTER*1 46*> = 'N': No transpose, apply Q; 47*> = 'T': Transpose, apply Q**T. 48*> \endverbatim 49*> 50*> \param[in] M 51*> \verbatim 52*> M is INTEGER 53*> The number of rows of the matrix A. M >=0. 54*> \endverbatim 55*> 56*> \param[in] N 57*> \verbatim 58*> N is INTEGER 59*> The number of columns of the matrix C. M >= N >= 0. 60*> \endverbatim 61*> 62*> \param[in] K 63*> \verbatim 64*> K is INTEGER 65*> The number of elementary reflectors whose product defines 66*> the matrix Q. 67*> N >= K >= 0; 68*> 69*> \endverbatim 70*> 71*> \param[in] MB 72*> \verbatim 73*> MB is INTEGER 74*> The block size to be used in the blocked QR. 75*> MB > N. (must be the same as DLATSQR) 76*> \endverbatim 77*> 78*> \param[in] NB 79*> \verbatim 80*> NB is INTEGER 81*> The column block size to be used in the blocked QR. 82*> N >= NB >= 1. 83*> \endverbatim 84*> 85*> \param[in] A 86*> \verbatim 87*> A is DOUBLE PRECISION array, dimension (LDA,K) 88*> The i-th column must contain the vector which defines the 89*> blockedelementary reflector H(i), for i = 1,2,...,k, as 90*> returned by DLATSQR in the first k columns of 91*> its array argument A. 92*> \endverbatim 93*> 94*> \param[in] LDA 95*> \verbatim 96*> LDA is INTEGER 97*> The leading dimension of the array A. 98*> If SIDE = 'L', LDA >= max(1,M); 99*> if SIDE = 'R', LDA >= max(1,N). 100*> \endverbatim 101*> 102*> \param[in] T 103*> \verbatim 104*> T is DOUBLE PRECISION array, dimension 105*> ( N * Number of blocks(CEIL(M-K/MB-K)), 106*> The blocked upper triangular block reflectors stored in compact form 107*> as a sequence of upper triangular blocks. See below 108*> for further details. 109*> \endverbatim 110*> 111*> \param[in] LDT 112*> \verbatim 113*> LDT is INTEGER 114*> The leading dimension of the array T. LDT >= NB. 115*> \endverbatim 116*> 117*> \param[in,out] C 118*> \verbatim 119*> C is DOUBLE PRECISION array, dimension (LDC,N) 120*> On entry, the M-by-N matrix C. 121*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. 122*> \endverbatim 123*> 124*> \param[in] LDC 125*> \verbatim 126*> LDC is INTEGER 127*> The leading dimension of the array C. LDC >= max(1,M). 128*> \endverbatim 129*> 130*> \param[out] WORK 131*> \verbatim 132*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) 133*> 134*> \endverbatim 135*> \param[in] LWORK 136*> \verbatim 137*> LWORK is INTEGER 138*> The dimension of the array WORK. 139*> 140*> If SIDE = 'L', LWORK >= max(1,N)*NB; 141*> if SIDE = 'R', LWORK >= max(1,MB)*NB. 142*> If LWORK = -1, then a workspace query is assumed; the routine 143*> only calculates the optimal size of the WORK array, returns 144*> this value as the first entry of the WORK array, and no error 145*> message related to LWORK is issued by XERBLA. 146*> 147*> \endverbatim 148*> \param[out] INFO 149*> \verbatim 150*> INFO is INTEGER 151*> = 0: successful exit 152*> < 0: if INFO = -i, the i-th argument had an illegal value 153*> \endverbatim 154* 155* Authors: 156* ======== 157* 158*> \author Univ. of Tennessee 159*> \author Univ. of California Berkeley 160*> \author Univ. of Colorado Denver 161*> \author NAG Ltd. 162* 163*> \par Further Details: 164* ===================== 165*> 166*> \verbatim 167*> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations, 168*> representing Q as a product of other orthogonal matrices 169*> Q = Q(1) * Q(2) * . . . * Q(k) 170*> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A: 171*> Q(1) zeros out the subdiagonal entries of rows 1:MB of A 172*> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A 173*> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A 174*> . . . 175*> 176*> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors 177*> stored under the diagonal of rows 1:MB of A, and by upper triangular 178*> block reflectors, stored in array T(1:LDT,1:N). 179*> For more information see Further Details in GEQRT. 180*> 181*> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors 182*> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular 183*> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N). 184*> The last Q(k) may use fewer rows. 185*> For more information see Further Details in TPQRT. 186*> 187*> For more details of the overall algorithm, see the description of 188*> Sequential TSQR in Section 2.2 of [1]. 189*> 190*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” 191*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou, 192*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 193*> \endverbatim 194*> 195* ===================================================================== 196 SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, 197 $ LDT, C, LDC, WORK, LWORK, INFO ) 198* 199* -- LAPACK computational routine -- 200* -- LAPACK is a software package provided by Univ. of Tennessee, -- 201* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 202* 203* .. Scalar Arguments .. 204 CHARACTER SIDE, TRANS 205 INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC 206* .. 207* .. Array Arguments .. 208 DOUBLE PRECISION A( LDA, * ), WORK( * ), C(LDC, * ), 209 $ T( LDT, * ) 210* .. 211* 212* ===================================================================== 213* 214* .. 215* .. Local Scalars .. 216 LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY 217 INTEGER I, II, KK, LW, CTR 218* .. 219* .. External Functions .. 220 LOGICAL LSAME 221 EXTERNAL LSAME 222* .. External Subroutines .. 223 EXTERNAL DGEMQRT, DTPMQRT, XERBLA 224* .. 225* .. Executable Statements .. 226* 227* Test the input arguments 228* 229 LQUERY = LWORK.LT.0 230 NOTRAN = LSAME( TRANS, 'N' ) 231 TRAN = LSAME( TRANS, 'T' ) 232 LEFT = LSAME( SIDE, 'L' ) 233 RIGHT = LSAME( SIDE, 'R' ) 234 IF (LEFT) THEN 235 LW = N * NB 236 ELSE 237 LW = MB * NB 238 END IF 239* 240 INFO = 0 241 IF( .NOT.LEFT .AND. .NOT.RIGHT ) THEN 242 INFO = -1 243 ELSE IF( .NOT.TRAN .AND. .NOT.NOTRAN ) THEN 244 INFO = -2 245 ELSE IF( M.LT.0 ) THEN 246 INFO = -3 247 ELSE IF( N.LT.0 ) THEN 248 INFO = -4 249 ELSE IF( K.LT.0 ) THEN 250 INFO = -5 251 ELSE IF( LDA.LT.MAX( 1, K ) ) THEN 252 INFO = -9 253 ELSE IF( LDT.LT.MAX( 1, NB) ) THEN 254 INFO = -11 255 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN 256 INFO = -13 257 ELSE IF(( LWORK.LT.MAX(1,LW)).AND.(.NOT.LQUERY)) THEN 258 INFO = -15 259 END IF 260* 261* Determine the block size if it is tall skinny or short and wide 262* 263 IF( INFO.EQ.0) THEN 264 WORK(1) = LW 265 END IF 266* 267 IF( INFO.NE.0 ) THEN 268 CALL XERBLA( 'DLAMTSQR', -INFO ) 269 RETURN 270 ELSE IF (LQUERY) THEN 271 RETURN 272 END IF 273* 274* Quick return if possible 275* 276 IF( MIN(M,N,K).EQ.0 ) THEN 277 RETURN 278 END IF 279* 280 IF((MB.LE.K).OR.(MB.GE.MAX(M,N,K))) THEN 281 CALL DGEMQRT( SIDE, TRANS, M, N, K, NB, A, LDA, 282 $ T, LDT, C, LDC, WORK, INFO) 283 RETURN 284 END IF 285* 286 IF(LEFT.AND.NOTRAN) THEN 287* 288* Multiply Q to the last block of C 289* 290 KK = MOD((M-K),(MB-K)) 291 CTR = (M-K)/(MB-K) 292 IF (KK.GT.0) THEN 293 II=M-KK+1 294 CALL DTPMQRT('L','N',KK , N, K, 0, NB, A(II,1), LDA, 295 $ T(1,CTR*K+1),LDT , C(1,1), LDC, 296 $ C(II,1), LDC, WORK, INFO ) 297 ELSE 298 II=M+1 299 END IF 300* 301 DO I=II-(MB-K),MB+1,-(MB-K) 302* 303* Multiply Q to the current block of C (I:I+MB,1:N) 304* 305 CTR = CTR - 1 306 CALL DTPMQRT('L','N',MB-K , N, K, 0,NB, A(I,1), LDA, 307 $ T(1,CTR*K+1),LDT, C(1,1), LDC, 308 $ C(I,1), LDC, WORK, INFO ) 309* 310 END DO 311* 312* Multiply Q to the first block of C (1:MB,1:N) 313* 314 CALL DGEMQRT('L','N',MB , N, K, NB, A(1,1), LDA, T 315 $ ,LDT ,C(1,1), LDC, WORK, INFO ) 316* 317 ELSE IF (LEFT.AND.TRAN) THEN 318* 319* Multiply Q to the first block of C 320* 321 KK = MOD((M-K),(MB-K)) 322 II=M-KK+1 323 CTR = 1 324 CALL DGEMQRT('L','T',MB , N, K, NB, A(1,1), LDA, T 325 $ ,LDT ,C(1,1), LDC, WORK, INFO ) 326* 327 DO I=MB+1,II-MB+K,(MB-K) 328* 329* Multiply Q to the current block of C (I:I+MB,1:N) 330* 331 CALL DTPMQRT('L','T',MB-K , N, K, 0,NB, A(I,1), LDA, 332 $ T(1,CTR * K + 1),LDT, C(1,1), LDC, 333 $ C(I,1), LDC, WORK, INFO ) 334 CTR = CTR + 1 335* 336 END DO 337 IF(II.LE.M) THEN 338* 339* Multiply Q to the last block of C 340* 341 CALL DTPMQRT('L','T',KK , N, K, 0,NB, A(II,1), LDA, 342 $ T(1,CTR * K + 1), LDT, C(1,1), LDC, 343 $ C(II,1), LDC, WORK, INFO ) 344* 345 END IF 346* 347 ELSE IF(RIGHT.AND.TRAN) THEN 348* 349* Multiply Q to the last block of C 350* 351 KK = MOD((N-K),(MB-K)) 352 CTR = (N-K)/(MB-K) 353 IF (KK.GT.0) THEN 354 II=N-KK+1 355 CALL DTPMQRT('R','T',M , KK, K, 0, NB, A(II,1), LDA, 356 $ T(1,CTR*K+1), LDT, C(1,1), LDC, 357 $ C(1,II), LDC, WORK, INFO ) 358 ELSE 359 II=N+1 360 END IF 361* 362 DO I=II-(MB-K),MB+1,-(MB-K) 363* 364* Multiply Q to the current block of C (1:M,I:I+MB) 365* 366 CTR = CTR - 1 367 CALL DTPMQRT('R','T',M , MB-K, K, 0,NB, A(I,1), LDA, 368 $ T(1,CTR*K+1), LDT, C(1,1), LDC, 369 $ C(1,I), LDC, WORK, INFO ) 370* 371 END DO 372* 373* Multiply Q to the first block of C (1:M,1:MB) 374* 375 CALL DGEMQRT('R','T',M , MB, K, NB, A(1,1), LDA, T 376 $ ,LDT ,C(1,1), LDC, WORK, INFO ) 377* 378 ELSE IF (RIGHT.AND.NOTRAN) THEN 379* 380* Multiply Q to the first block of C 381* 382 KK = MOD((N-K),(MB-K)) 383 II=N-KK+1 384 CTR = 1 385 CALL DGEMQRT('R','N', M, MB , K, NB, A(1,1), LDA, T 386 $ ,LDT ,C(1,1), LDC, WORK, INFO ) 387* 388 DO I=MB+1,II-MB+K,(MB-K) 389* 390* Multiply Q to the current block of C (1:M,I:I+MB) 391* 392 CALL DTPMQRT('R','N', M, MB-K, K, 0,NB, A(I,1), LDA, 393 $ T(1, CTR * K + 1),LDT, C(1,1), LDC, 394 $ C(1,I), LDC, WORK, INFO ) 395 CTR = CTR + 1 396* 397 END DO 398 IF(II.LE.N) THEN 399* 400* Multiply Q to the last block of C 401* 402 CALL DTPMQRT('R','N', M, KK , K, 0,NB, A(II,1), LDA, 403 $ T(1, CTR * K + 1),LDT, C(1,1), LDC, 404 $ C(1,II), LDC, WORK, INFO ) 405* 406 END IF 407* 408 END IF 409* 410 WORK(1) = LW 411 RETURN 412* 413* End of DLAMTSQR 414* 415 END 416