1*> \brief \b DLAORHR_COL_GETRFNP
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLAORHR_COL_GETRFNP + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            INFO, LDA, M, N
25*       ..
26*       .. Array Arguments ..
27*       DOUBLE PRECISION   A( LDA, * ), D( * )
28*       ..
29*
30*
31*> \par Purpose:
32*  =============
33*>
34*> \verbatim
35*>
36*> DLAORHR_COL_GETRFNP computes the modified LU factorization without
37*> pivoting of a real general M-by-N matrix A. The factorization has
38*> the form:
39*>
40*>     A - S = L * U,
41*>
42*> where:
43*>    S is a m-by-n diagonal sign matrix with the diagonal D, so that
44*>    D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed
45*>    as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing
46*>    i-1 steps of Gaussian elimination. This means that the diagonal
47*>    element at each step of "modified" Gaussian elimination is
48*>    at least one in absolute value (so that division-by-zero not
49*>    not possible during the division by the diagonal element);
50*>
51*>    L is a M-by-N lower triangular matrix with unit diagonal elements
52*>    (lower trapezoidal if M > N);
53*>
54*>    and U is a M-by-N upper triangular matrix
55*>    (upper trapezoidal if M < N).
56*>
57*> This routine is an auxiliary routine used in the Householder
58*> reconstruction routine DORHR_COL. In DORHR_COL, this routine is
59*> applied to an M-by-N matrix A with orthonormal columns, where each
60*> element is bounded by one in absolute value. With the choice of
61*> the matrix S above, one can show that the diagonal element at each
62*> step of Gaussian elimination is the largest (in absolute value) in
63*> the column on or below the diagonal, so that no pivoting is required
64*> for numerical stability [1].
65*>
66*> For more details on the Householder reconstruction algorithm,
67*> including the modified LU factorization, see [1].
68*>
69*> This is the blocked right-looking version of the algorithm,
70*> calling Level 3 BLAS to update the submatrix. To factorize a block,
71*> this routine calls the recursive routine DLAORHR_COL_GETRFNP2.
72*>
73*> [1] "Reconstructing Householder vectors from tall-skinny QR",
74*>     G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen,
75*>     E. Solomonik, J. Parallel Distrib. Comput.,
76*>     vol. 85, pp. 3-31, 2015.
77*> \endverbatim
78*
79*  Arguments:
80*  ==========
81*
82*> \param[in] M
83*> \verbatim
84*>          M is INTEGER
85*>          The number of rows of the matrix A.  M >= 0.
86*> \endverbatim
87*>
88*> \param[in] N
89*> \verbatim
90*>          N is INTEGER
91*>          The number of columns of the matrix A.  N >= 0.
92*> \endverbatim
93*>
94*> \param[in,out] A
95*> \verbatim
96*>          A is DOUBLE PRECISION array, dimension (LDA,N)
97*>          On entry, the M-by-N matrix to be factored.
98*>          On exit, the factors L and U from the factorization
99*>          A-S=L*U; the unit diagonal elements of L are not stored.
100*> \endverbatim
101*>
102*> \param[in] LDA
103*> \verbatim
104*>          LDA is INTEGER
105*>          The leading dimension of the array A.  LDA >= max(1,M).
106*> \endverbatim
107*>
108*> \param[out] D
109*> \verbatim
110*>          D is DOUBLE PRECISION array, dimension min(M,N)
111*>          The diagonal elements of the diagonal M-by-N sign matrix S,
112*>          D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can
113*>          be only plus or minus one.
114*> \endverbatim
115*>
116*> \param[out] INFO
117*> \verbatim
118*>          INFO is INTEGER
119*>          = 0:  successful exit
120*>          < 0:  if INFO = -i, the i-th argument had an illegal value
121*> \endverbatim
122*>
123*  Authors:
124*  ========
125*
126*> \author Univ. of Tennessee
127*> \author Univ. of California Berkeley
128*> \author Univ. of Colorado Denver
129*> \author NAG Ltd.
130*
131*> \ingroup doubleGEcomputational
132*
133*> \par Contributors:
134*  ==================
135*>
136*> \verbatim
137*>
138*> November 2019, Igor Kozachenko,
139*>                Computer Science Division,
140*>                University of California, Berkeley
141*>
142*> \endverbatim
143*
144*  =====================================================================
145      SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO )
146      IMPLICIT NONE
147*
148*  -- LAPACK computational routine --
149*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
150*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*
152*     .. Scalar Arguments ..
153      INTEGER            INFO, LDA, M, N
154*     ..
155*     .. Array Arguments ..
156      DOUBLE PRECISION   A( LDA, * ), D( * )
157*     ..
158*
159*  =====================================================================
160*
161*     .. Parameters ..
162      DOUBLE PRECISION   ONE
163      PARAMETER          ( ONE = 1.0D+0 )
164*     ..
165*     .. Local Scalars ..
166      INTEGER            IINFO, J, JB, NB
167*     ..
168*     .. External Subroutines ..
169      EXTERNAL           DGEMM, DLAORHR_COL_GETRFNP2, DTRSM, XERBLA
170*     ..
171*     .. External Functions ..
172      INTEGER            ILAENV
173      EXTERNAL           ILAENV
174*     ..
175*     .. Intrinsic Functions ..
176      INTRINSIC          MAX, MIN
177*     ..
178*     .. Executable Statements ..
179*
180*     Test the input parameters.
181*
182      INFO = 0
183      IF( M.LT.0 ) THEN
184         INFO = -1
185      ELSE IF( N.LT.0 ) THEN
186         INFO = -2
187      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
188         INFO = -4
189      END IF
190      IF( INFO.NE.0 ) THEN
191         CALL XERBLA( 'DLAORHR_COL_GETRFNP', -INFO )
192         RETURN
193      END IF
194*
195*     Quick return if possible
196*
197      IF( MIN( M, N ).EQ.0 )
198     $   RETURN
199*
200*     Determine the block size for this environment.
201*
202
203      NB = ILAENV( 1, 'DLAORHR_COL_GETRFNP', ' ', M, N, -1, -1 )
204
205      IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN
206*
207*        Use unblocked code.
208*
209         CALL DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO )
210      ELSE
211*
212*        Use blocked code.
213*
214         DO J = 1, MIN( M, N ), NB
215            JB = MIN( MIN( M, N )-J+1, NB )
216*
217*           Factor diagonal and subdiagonal blocks.
218*
219            CALL DLAORHR_COL_GETRFNP2( M-J+1, JB, A( J, J ), LDA,
220     $                                 D( J ), IINFO )
221*
222            IF( J+JB.LE.N ) THEN
223*
224*              Compute block row of U.
225*
226               CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB,
227     $                     N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ),
228     $                     LDA )
229               IF( J+JB.LE.M ) THEN
230*
231*                 Update trailing submatrix.
232*
233                  CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1,
234     $                        N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA,
235     $                        A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ),
236     $                        LDA )
237               END IF
238            END IF
239         END DO
240      END IF
241      RETURN
242*
243*     End of DLAORHR_COL_GETRFNP
244*
245      END
246