1*> \brief \b DLAORHR_COL_GETRFNP 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DLAORHR_COL_GETRFNP + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaorhr_col_getrfnp.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO ) 22* 23* .. Scalar Arguments .. 24* INTEGER INFO, LDA, M, N 25* .. 26* .. Array Arguments .. 27* DOUBLE PRECISION A( LDA, * ), D( * ) 28* .. 29* 30* 31*> \par Purpose: 32* ============= 33*> 34*> \verbatim 35*> 36*> DLAORHR_COL_GETRFNP computes the modified LU factorization without 37*> pivoting of a real general M-by-N matrix A. The factorization has 38*> the form: 39*> 40*> A - S = L * U, 41*> 42*> where: 43*> S is a m-by-n diagonal sign matrix with the diagonal D, so that 44*> D(i) = S(i,i), 1 <= i <= min(M,N). The diagonal D is constructed 45*> as D(i)=-SIGN(A(i,i)), where A(i,i) is the value after performing 46*> i-1 steps of Gaussian elimination. This means that the diagonal 47*> element at each step of "modified" Gaussian elimination is 48*> at least one in absolute value (so that division-by-zero not 49*> not possible during the division by the diagonal element); 50*> 51*> L is a M-by-N lower triangular matrix with unit diagonal elements 52*> (lower trapezoidal if M > N); 53*> 54*> and U is a M-by-N upper triangular matrix 55*> (upper trapezoidal if M < N). 56*> 57*> This routine is an auxiliary routine used in the Householder 58*> reconstruction routine DORHR_COL. In DORHR_COL, this routine is 59*> applied to an M-by-N matrix A with orthonormal columns, where each 60*> element is bounded by one in absolute value. With the choice of 61*> the matrix S above, one can show that the diagonal element at each 62*> step of Gaussian elimination is the largest (in absolute value) in 63*> the column on or below the diagonal, so that no pivoting is required 64*> for numerical stability [1]. 65*> 66*> For more details on the Householder reconstruction algorithm, 67*> including the modified LU factorization, see [1]. 68*> 69*> This is the blocked right-looking version of the algorithm, 70*> calling Level 3 BLAS to update the submatrix. To factorize a block, 71*> this routine calls the recursive routine DLAORHR_COL_GETRFNP2. 72*> 73*> [1] "Reconstructing Householder vectors from tall-skinny QR", 74*> G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.D. Nguyen, 75*> E. Solomonik, J. Parallel Distrib. Comput., 76*> vol. 85, pp. 3-31, 2015. 77*> \endverbatim 78* 79* Arguments: 80* ========== 81* 82*> \param[in] M 83*> \verbatim 84*> M is INTEGER 85*> The number of rows of the matrix A. M >= 0. 86*> \endverbatim 87*> 88*> \param[in] N 89*> \verbatim 90*> N is INTEGER 91*> The number of columns of the matrix A. N >= 0. 92*> \endverbatim 93*> 94*> \param[in,out] A 95*> \verbatim 96*> A is DOUBLE PRECISION array, dimension (LDA,N) 97*> On entry, the M-by-N matrix to be factored. 98*> On exit, the factors L and U from the factorization 99*> A-S=L*U; the unit diagonal elements of L are not stored. 100*> \endverbatim 101*> 102*> \param[in] LDA 103*> \verbatim 104*> LDA is INTEGER 105*> The leading dimension of the array A. LDA >= max(1,M). 106*> \endverbatim 107*> 108*> \param[out] D 109*> \verbatim 110*> D is DOUBLE PRECISION array, dimension min(M,N) 111*> The diagonal elements of the diagonal M-by-N sign matrix S, 112*> D(i) = S(i,i), where 1 <= i <= min(M,N). The elements can 113*> be only plus or minus one. 114*> \endverbatim 115*> 116*> \param[out] INFO 117*> \verbatim 118*> INFO is INTEGER 119*> = 0: successful exit 120*> < 0: if INFO = -i, the i-th argument had an illegal value 121*> \endverbatim 122*> 123* Authors: 124* ======== 125* 126*> \author Univ. of Tennessee 127*> \author Univ. of California Berkeley 128*> \author Univ. of Colorado Denver 129*> \author NAG Ltd. 130* 131*> \ingroup doubleGEcomputational 132* 133*> \par Contributors: 134* ================== 135*> 136*> \verbatim 137*> 138*> November 2019, Igor Kozachenko, 139*> Computer Science Division, 140*> University of California, Berkeley 141*> 142*> \endverbatim 143* 144* ===================================================================== 145 SUBROUTINE DLAORHR_COL_GETRFNP( M, N, A, LDA, D, INFO ) 146 IMPLICIT NONE 147* 148* -- LAPACK computational routine -- 149* -- LAPACK is a software package provided by Univ. of Tennessee, -- 150* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 151* 152* .. Scalar Arguments .. 153 INTEGER INFO, LDA, M, N 154* .. 155* .. Array Arguments .. 156 DOUBLE PRECISION A( LDA, * ), D( * ) 157* .. 158* 159* ===================================================================== 160* 161* .. Parameters .. 162 DOUBLE PRECISION ONE 163 PARAMETER ( ONE = 1.0D+0 ) 164* .. 165* .. Local Scalars .. 166 INTEGER IINFO, J, JB, NB 167* .. 168* .. External Subroutines .. 169 EXTERNAL DGEMM, DLAORHR_COL_GETRFNP2, DTRSM, XERBLA 170* .. 171* .. External Functions .. 172 INTEGER ILAENV 173 EXTERNAL ILAENV 174* .. 175* .. Intrinsic Functions .. 176 INTRINSIC MAX, MIN 177* .. 178* .. Executable Statements .. 179* 180* Test the input parameters. 181* 182 INFO = 0 183 IF( M.LT.0 ) THEN 184 INFO = -1 185 ELSE IF( N.LT.0 ) THEN 186 INFO = -2 187 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 188 INFO = -4 189 END IF 190 IF( INFO.NE.0 ) THEN 191 CALL XERBLA( 'DLAORHR_COL_GETRFNP', -INFO ) 192 RETURN 193 END IF 194* 195* Quick return if possible 196* 197 IF( MIN( M, N ).EQ.0 ) 198 $ RETURN 199* 200* Determine the block size for this environment. 201* 202 203 NB = ILAENV( 1, 'DLAORHR_COL_GETRFNP', ' ', M, N, -1, -1 ) 204 205 IF( NB.LE.1 .OR. NB.GE.MIN( M, N ) ) THEN 206* 207* Use unblocked code. 208* 209 CALL DLAORHR_COL_GETRFNP2( M, N, A, LDA, D, INFO ) 210 ELSE 211* 212* Use blocked code. 213* 214 DO J = 1, MIN( M, N ), NB 215 JB = MIN( MIN( M, N )-J+1, NB ) 216* 217* Factor diagonal and subdiagonal blocks. 218* 219 CALL DLAORHR_COL_GETRFNP2( M-J+1, JB, A( J, J ), LDA, 220 $ D( J ), IINFO ) 221* 222 IF( J+JB.LE.N ) THEN 223* 224* Compute block row of U. 225* 226 CALL DTRSM( 'Left', 'Lower', 'No transpose', 'Unit', JB, 227 $ N-J-JB+1, ONE, A( J, J ), LDA, A( J, J+JB ), 228 $ LDA ) 229 IF( J+JB.LE.M ) THEN 230* 231* Update trailing submatrix. 232* 233 CALL DGEMM( 'No transpose', 'No transpose', M-J-JB+1, 234 $ N-J-JB+1, JB, -ONE, A( J+JB, J ), LDA, 235 $ A( J, J+JB ), LDA, ONE, A( J+JB, J+JB ), 236 $ LDA ) 237 END IF 238 END IF 239 END DO 240 END IF 241 RETURN 242* 243* End of DLAORHR_COL_GETRFNP 244* 245 END 246