1*> \brief \b SGBTRF
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SGBTRF + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbtrf.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbtrf.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbtrf.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            INFO, KL, KU, LDAB, M, N
25*       ..
26*       .. Array Arguments ..
27*       INTEGER            IPIV( * )
28*       REAL               AB( LDAB, * )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> SGBTRF computes an LU factorization of a real m-by-n band matrix A
38*> using partial pivoting with row interchanges.
39*>
40*> This is the blocked version of the algorithm, calling Level 3 BLAS.
41*> \endverbatim
42*
43*  Arguments:
44*  ==========
45*
46*> \param[in] M
47*> \verbatim
48*>          M is INTEGER
49*>          The number of rows of the matrix A.  M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*>          N is INTEGER
55*>          The number of columns of the matrix A.  N >= 0.
56*> \endverbatim
57*>
58*> \param[in] KL
59*> \verbatim
60*>          KL is INTEGER
61*>          The number of subdiagonals within the band of A.  KL >= 0.
62*> \endverbatim
63*>
64*> \param[in] KU
65*> \verbatim
66*>          KU is INTEGER
67*>          The number of superdiagonals within the band of A.  KU >= 0.
68*> \endverbatim
69*>
70*> \param[in,out] AB
71*> \verbatim
72*>          AB is REAL array, dimension (LDAB,N)
73*>          On entry, the matrix A in band storage, in rows KL+1 to
74*>          2*KL+KU+1; rows 1 to KL of the array need not be set.
75*>          The j-th column of A is stored in the j-th column of the
76*>          array AB as follows:
77*>          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
78*>
79*>          On exit, details of the factorization: U is stored as an
80*>          upper triangular band matrix with KL+KU superdiagonals in
81*>          rows 1 to KL+KU+1, and the multipliers used during the
82*>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
83*>          See below for further details.
84*> \endverbatim
85*>
86*> \param[in] LDAB
87*> \verbatim
88*>          LDAB is INTEGER
89*>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
90*> \endverbatim
91*>
92*> \param[out] IPIV
93*> \verbatim
94*>          IPIV is INTEGER array, dimension (min(M,N))
95*>          The pivot indices; for 1 <= i <= min(M,N), row i of the
96*>          matrix was interchanged with row IPIV(i).
97*> \endverbatim
98*>
99*> \param[out] INFO
100*> \verbatim
101*>          INFO is INTEGER
102*>          = 0: successful exit
103*>          < 0: if INFO = -i, the i-th argument had an illegal value
104*>          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
105*>               has been completed, but the factor U is exactly
106*>               singular, and division by zero will occur if it is used
107*>               to solve a system of equations.
108*> \endverbatim
109*
110*  Authors:
111*  ========
112*
113*> \author Univ. of Tennessee
114*> \author Univ. of California Berkeley
115*> \author Univ. of Colorado Denver
116*> \author NAG Ltd.
117*
118*> \ingroup realGBcomputational
119*
120*> \par Further Details:
121*  =====================
122*>
123*> \verbatim
124*>
125*>  The band storage scheme is illustrated by the following example, when
126*>  M = N = 6, KL = 2, KU = 1:
127*>
128*>  On entry:                       On exit:
129*>
130*>      *    *    *    +    +    +       *    *    *   u14  u25  u36
131*>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
132*>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
133*>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
134*>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
135*>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
136*>
137*>  Array elements marked * are not used by the routine; elements marked
138*>  + need not be set on entry, but are required by the routine to store
139*>  elements of U because of fill-in resulting from the row interchanges.
140*> \endverbatim
141*>
142*  =====================================================================
143      SUBROUTINE SGBTRF( M, N, KL, KU, AB, LDAB, IPIV, INFO )
144*
145*  -- LAPACK computational routine --
146*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
147*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
148*
149*     .. Scalar Arguments ..
150      INTEGER            INFO, KL, KU, LDAB, M, N
151*     ..
152*     .. Array Arguments ..
153      INTEGER            IPIV( * )
154      REAL               AB( LDAB, * )
155*     ..
156*
157*  =====================================================================
158*
159*     .. Parameters ..
160      REAL               ONE, ZERO
161      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
162      INTEGER            NBMAX, LDWORK
163      PARAMETER          ( NBMAX = 64, LDWORK = NBMAX+1 )
164*     ..
165*     .. Local Scalars ..
166      INTEGER            I, I2, I3, II, IP, J, J2, J3, JB, JJ, JM, JP,
167     $                   JU, K2, KM, KV, NB, NW
168      REAL               TEMP
169*     ..
170*     .. Local Arrays ..
171      REAL               WORK13( LDWORK, NBMAX ),
172     $                   WORK31( LDWORK, NBMAX )
173*     ..
174*     .. External Functions ..
175      INTEGER            ILAENV, ISAMAX
176      EXTERNAL           ILAENV, ISAMAX
177*     ..
178*     .. External Subroutines ..
179      EXTERNAL           SCOPY, SGBTF2, SGEMM, SGER, SLASWP, SSCAL,
180     $                   SSWAP, STRSM, XERBLA
181*     ..
182*     .. Intrinsic Functions ..
183      INTRINSIC          MAX, MIN
184*     ..
185*     .. Executable Statements ..
186*
187*     KV is the number of superdiagonals in the factor U, allowing for
188*     fill-in
189*
190      KV = KU + KL
191*
192*     Test the input parameters.
193*
194      INFO = 0
195      IF( M.LT.0 ) THEN
196         INFO = -1
197      ELSE IF( N.LT.0 ) THEN
198         INFO = -2
199      ELSE IF( KL.LT.0 ) THEN
200         INFO = -3
201      ELSE IF( KU.LT.0 ) THEN
202         INFO = -4
203      ELSE IF( LDAB.LT.KL+KV+1 ) THEN
204         INFO = -6
205      END IF
206      IF( INFO.NE.0 ) THEN
207         CALL XERBLA( 'SGBTRF', -INFO )
208         RETURN
209      END IF
210*
211*     Quick return if possible
212*
213      IF( M.EQ.0 .OR. N.EQ.0 )
214     $   RETURN
215*
216*     Determine the block size for this environment
217*
218      NB = ILAENV( 1, 'SGBTRF', ' ', M, N, KL, KU )
219*
220*     The block size must not exceed the limit set by the size of the
221*     local arrays WORK13 and WORK31.
222*
223      NB = MIN( NB, NBMAX )
224*
225      IF( NB.LE.1 .OR. NB.GT.KL ) THEN
226*
227*        Use unblocked code
228*
229         CALL SGBTF2( M, N, KL, KU, AB, LDAB, IPIV, INFO )
230      ELSE
231*
232*        Use blocked code
233*
234*        Zero the superdiagonal elements of the work array WORK13
235*
236         DO 20 J = 1, NB
237            DO 10 I = 1, J - 1
238               WORK13( I, J ) = ZERO
239   10       CONTINUE
240   20    CONTINUE
241*
242*        Zero the subdiagonal elements of the work array WORK31
243*
244         DO 40 J = 1, NB
245            DO 30 I = J + 1, NB
246               WORK31( I, J ) = ZERO
247   30       CONTINUE
248   40    CONTINUE
249*
250*        Gaussian elimination with partial pivoting
251*
252*        Set fill-in elements in columns KU+2 to KV to zero
253*
254         DO 60 J = KU + 2, MIN( KV, N )
255            DO 50 I = KV - J + 2, KL
256               AB( I, J ) = ZERO
257   50       CONTINUE
258   60    CONTINUE
259*
260*        JU is the index of the last column affected by the current
261*        stage of the factorization
262*
263         JU = 1
264*
265         DO 180 J = 1, MIN( M, N ), NB
266            JB = MIN( NB, MIN( M, N )-J+1 )
267*
268*           The active part of the matrix is partitioned
269*
270*              A11   A12   A13
271*              A21   A22   A23
272*              A31   A32   A33
273*
274*           Here A11, A21 and A31 denote the current block of JB columns
275*           which is about to be factorized. The number of rows in the
276*           partitioning are JB, I2, I3 respectively, and the numbers
277*           of columns are JB, J2, J3. The superdiagonal elements of A13
278*           and the subdiagonal elements of A31 lie outside the band.
279*
280            I2 = MIN( KL-JB, M-J-JB+1 )
281            I3 = MIN( JB, M-J-KL+1 )
282*
283*           J2 and J3 are computed after JU has been updated.
284*
285*           Factorize the current block of JB columns
286*
287            DO 80 JJ = J, J + JB - 1
288*
289*              Set fill-in elements in column JJ+KV to zero
290*
291               IF( JJ+KV.LE.N ) THEN
292                  DO 70 I = 1, KL
293                     AB( I, JJ+KV ) = ZERO
294   70             CONTINUE
295               END IF
296*
297*              Find pivot and test for singularity. KM is the number of
298*              subdiagonal elements in the current column.
299*
300               KM = MIN( KL, M-JJ )
301               JP = ISAMAX( KM+1, AB( KV+1, JJ ), 1 )
302               IPIV( JJ ) = JP + JJ - J
303               IF( AB( KV+JP, JJ ).NE.ZERO ) THEN
304                  JU = MAX( JU, MIN( JJ+KU+JP-1, N ) )
305                  IF( JP.NE.1 ) THEN
306*
307*                    Apply interchange to columns J to J+JB-1
308*
309                     IF( JP+JJ-1.LT.J+KL ) THEN
310*
311                        CALL SSWAP( JB, AB( KV+1+JJ-J, J ), LDAB-1,
312     $                              AB( KV+JP+JJ-J, J ), LDAB-1 )
313                     ELSE
314*
315*                       The interchange affects columns J to JJ-1 of A31
316*                       which are stored in the work array WORK31
317*
318                        CALL SSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
319     $                              WORK31( JP+JJ-J-KL, 1 ), LDWORK )
320                        CALL SSWAP( J+JB-JJ, AB( KV+1, JJ ), LDAB-1,
321     $                              AB( KV+JP, JJ ), LDAB-1 )
322                     END IF
323                  END IF
324*
325*                 Compute multipliers
326*
327                  CALL SSCAL( KM, ONE / AB( KV+1, JJ ), AB( KV+2, JJ ),
328     $                        1 )
329*
330*                 Update trailing submatrix within the band and within
331*                 the current block. JM is the index of the last column
332*                 which needs to be updated.
333*
334                  JM = MIN( JU, J+JB-1 )
335                  IF( JM.GT.JJ )
336     $               CALL SGER( KM, JM-JJ, -ONE, AB( KV+2, JJ ), 1,
337     $                          AB( KV, JJ+1 ), LDAB-1,
338     $                          AB( KV+1, JJ+1 ), LDAB-1 )
339               ELSE
340*
341*                 If pivot is zero, set INFO to the index of the pivot
342*                 unless a zero pivot has already been found.
343*
344                  IF( INFO.EQ.0 )
345     $               INFO = JJ
346               END IF
347*
348*              Copy current column of A31 into the work array WORK31
349*
350               NW = MIN( JJ-J+1, I3 )
351               IF( NW.GT.0 )
352     $            CALL SCOPY( NW, AB( KV+KL+1-JJ+J, JJ ), 1,
353     $                        WORK31( 1, JJ-J+1 ), 1 )
354   80       CONTINUE
355            IF( J+JB.LE.N ) THEN
356*
357*              Apply the row interchanges to the other blocks.
358*
359               J2 = MIN( JU-J+1, KV ) - JB
360               J3 = MAX( 0, JU-J-KV+1 )
361*
362*              Use SLASWP to apply the row interchanges to A12, A22, and
363*              A32.
364*
365               CALL SLASWP( J2, AB( KV+1-JB, J+JB ), LDAB-1, 1, JB,
366     $                      IPIV( J ), 1 )
367*
368*              Adjust the pivot indices.
369*
370               DO 90 I = J, J + JB - 1
371                  IPIV( I ) = IPIV( I ) + J - 1
372   90          CONTINUE
373*
374*              Apply the row interchanges to A13, A23, and A33
375*              columnwise.
376*
377               K2 = J - 1 + JB + J2
378               DO 110 I = 1, J3
379                  JJ = K2 + I
380                  DO 100 II = J + I - 1, J + JB - 1
381                     IP = IPIV( II )
382                     IF( IP.NE.II ) THEN
383                        TEMP = AB( KV+1+II-JJ, JJ )
384                        AB( KV+1+II-JJ, JJ ) = AB( KV+1+IP-JJ, JJ )
385                        AB( KV+1+IP-JJ, JJ ) = TEMP
386                     END IF
387  100             CONTINUE
388  110          CONTINUE
389*
390*              Update the relevant part of the trailing submatrix
391*
392               IF( J2.GT.0 ) THEN
393*
394*                 Update A12
395*
396                  CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit',
397     $                        JB, J2, ONE, AB( KV+1, J ), LDAB-1,
398     $                        AB( KV+1-JB, J+JB ), LDAB-1 )
399*
400                  IF( I2.GT.0 ) THEN
401*
402*                    Update A22
403*
404                     CALL SGEMM( 'No transpose', 'No transpose', I2, J2,
405     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
406     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
407     $                           AB( KV+1, J+JB ), LDAB-1 )
408                  END IF
409*
410                  IF( I3.GT.0 ) THEN
411*
412*                    Update A32
413*
414                     CALL SGEMM( 'No transpose', 'No transpose', I3, J2,
415     $                           JB, -ONE, WORK31, LDWORK,
416     $                           AB( KV+1-JB, J+JB ), LDAB-1, ONE,
417     $                           AB( KV+KL+1-JB, J+JB ), LDAB-1 )
418                  END IF
419               END IF
420*
421               IF( J3.GT.0 ) THEN
422*
423*                 Copy the lower triangle of A13 into the work array
424*                 WORK13
425*
426                  DO 130 JJ = 1, J3
427                     DO 120 II = JJ, JB
428                        WORK13( II, JJ ) = AB( II-JJ+1, JJ+J+KV-1 )
429  120                CONTINUE
430  130             CONTINUE
431*
432*                 Update A13 in the work array
433*
434                  CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit',
435     $                        JB, J3, ONE, AB( KV+1, J ), LDAB-1,
436     $                        WORK13, LDWORK )
437*
438                  IF( I2.GT.0 ) THEN
439*
440*                    Update A23
441*
442                     CALL SGEMM( 'No transpose', 'No transpose', I2, J3,
443     $                           JB, -ONE, AB( KV+1+JB, J ), LDAB-1,
444     $                           WORK13, LDWORK, ONE, AB( 1+JB, J+KV ),
445     $                           LDAB-1 )
446                  END IF
447*
448                  IF( I3.GT.0 ) THEN
449*
450*                    Update A33
451*
452                     CALL SGEMM( 'No transpose', 'No transpose', I3, J3,
453     $                           JB, -ONE, WORK31, LDWORK, WORK13,
454     $                           LDWORK, ONE, AB( 1+KL, J+KV ), LDAB-1 )
455                  END IF
456*
457*                 Copy the lower triangle of A13 back into place
458*
459                  DO 150 JJ = 1, J3
460                     DO 140 II = JJ, JB
461                        AB( II-JJ+1, JJ+J+KV-1 ) = WORK13( II, JJ )
462  140                CONTINUE
463  150             CONTINUE
464               END IF
465            ELSE
466*
467*              Adjust the pivot indices.
468*
469               DO 160 I = J, J + JB - 1
470                  IPIV( I ) = IPIV( I ) + J - 1
471  160          CONTINUE
472            END IF
473*
474*           Partially undo the interchanges in the current block to
475*           restore the upper triangular form of A31 and copy the upper
476*           triangle of A31 back into place
477*
478            DO 170 JJ = J + JB - 1, J, -1
479               JP = IPIV( JJ ) - JJ + 1
480               IF( JP.NE.1 ) THEN
481*
482*                 Apply interchange to columns J to JJ-1
483*
484                  IF( JP+JJ-1.LT.J+KL ) THEN
485*
486*                    The interchange does not affect A31
487*
488                     CALL SSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
489     $                           AB( KV+JP+JJ-J, J ), LDAB-1 )
490                  ELSE
491*
492*                    The interchange does affect A31
493*
494                     CALL SSWAP( JJ-J, AB( KV+1+JJ-J, J ), LDAB-1,
495     $                           WORK31( JP+JJ-J-KL, 1 ), LDWORK )
496                  END IF
497               END IF
498*
499*              Copy the current column of A31 back into place
500*
501               NW = MIN( I3, JJ-J+1 )
502               IF( NW.GT.0 )
503     $            CALL SCOPY( NW, WORK31( 1, JJ-J+1 ), 1,
504     $                        AB( KV+KL+1-JJ+J, JJ ), 1 )
505  170       CONTINUE
506  180    CONTINUE
507      END IF
508*
509      RETURN
510*
511*     End of SGBTRF
512*
513      END
514