1*> \brief \b SLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download SLA_GBRPVGRW + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sla_gbrpvgrw.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sla_gbrpvgrw.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sla_gbrpvgrw.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* REAL FUNCTION SLA_GBRPVGRW( N, KL, KU, NCOLS, AB, LDAB, AFB, 22* LDAFB ) 23* 24* .. Scalar Arguments .. 25* INTEGER N, KL, KU, NCOLS, LDAB, LDAFB 26* .. 27* .. Array Arguments .. 28* REAL AB( LDAB, * ), AFB( LDAFB, * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> SLA_GBRPVGRW computes the reciprocal pivot growth factor 38*> norm(A)/norm(U). The "max absolute element" norm is used. If this is 39*> much less than 1, the stability of the LU factorization of the 40*> (equilibrated) matrix A could be poor. This also means that the 41*> solution X, estimated condition numbers, and error bounds could be 42*> unreliable. 43*> \endverbatim 44* 45* Arguments: 46* ========== 47* 48*> \param[in] N 49*> \verbatim 50*> N is INTEGER 51*> The number of linear equations, i.e., the order of the 52*> matrix A. N >= 0. 53*> \endverbatim 54*> 55*> \param[in] KL 56*> \verbatim 57*> KL is INTEGER 58*> The number of subdiagonals within the band of A. KL >= 0. 59*> \endverbatim 60*> 61*> \param[in] KU 62*> \verbatim 63*> KU is INTEGER 64*> The number of superdiagonals within the band of A. KU >= 0. 65*> \endverbatim 66*> 67*> \param[in] NCOLS 68*> \verbatim 69*> NCOLS is INTEGER 70*> The number of columns of the matrix A. NCOLS >= 0. 71*> \endverbatim 72*> 73*> \param[in] AB 74*> \verbatim 75*> AB is REAL array, dimension (LDAB,N) 76*> On entry, the matrix A in band storage, in rows 1 to KL+KU+1. 77*> The j-th column of A is stored in the j-th column of the 78*> array AB as follows: 79*> AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) 80*> \endverbatim 81*> 82*> \param[in] LDAB 83*> \verbatim 84*> LDAB is INTEGER 85*> The leading dimension of the array AB. LDAB >= KL+KU+1. 86*> \endverbatim 87*> 88*> \param[in] AFB 89*> \verbatim 90*> AFB is REAL array, dimension (LDAFB,N) 91*> Details of the LU factorization of the band matrix A, as 92*> computed by SGBTRF. U is stored as an upper triangular 93*> band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, 94*> and the multipliers used during the factorization are stored 95*> in rows KL+KU+2 to 2*KL+KU+1. 96*> \endverbatim 97*> 98*> \param[in] LDAFB 99*> \verbatim 100*> LDAFB is INTEGER 101*> The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. 102*> \endverbatim 103* 104* Authors: 105* ======== 106* 107*> \author Univ. of Tennessee 108*> \author Univ. of California Berkeley 109*> \author Univ. of Colorado Denver 110*> \author NAG Ltd. 111* 112*> \ingroup realGBcomputational 113* 114* ===================================================================== 115 REAL FUNCTION SLA_GBRPVGRW( N, KL, KU, NCOLS, AB, LDAB, AFB, 116 $ LDAFB ) 117* 118* -- LAPACK computational routine -- 119* -- LAPACK is a software package provided by Univ. of Tennessee, -- 120* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 121* 122* .. Scalar Arguments .. 123 INTEGER N, KL, KU, NCOLS, LDAB, LDAFB 124* .. 125* .. Array Arguments .. 126 REAL AB( LDAB, * ), AFB( LDAFB, * ) 127* .. 128* 129* ===================================================================== 130* 131* .. Local Scalars .. 132 INTEGER I, J, KD 133 REAL AMAX, UMAX, RPVGRW 134* .. 135* .. Intrinsic Functions .. 136 INTRINSIC ABS, MAX, MIN 137* .. 138* .. Executable Statements .. 139* 140 RPVGRW = 1.0 141 142 KD = KU + 1 143 DO J = 1, NCOLS 144 AMAX = 0.0 145 UMAX = 0.0 146 DO I = MAX( J-KU, 1 ), MIN( J+KL, N ) 147 AMAX = MAX( ABS( AB( KD+I-J, J)), AMAX ) 148 END DO 149 DO I = MAX( J-KU, 1 ), J 150 UMAX = MAX( ABS( AFB( KD+I-J, J ) ), UMAX ) 151 END DO 152 IF ( UMAX /= 0.0 ) THEN 153 RPVGRW = MIN( AMAX / UMAX, RPVGRW ) 154 END IF 155 END DO 156 SLA_GBRPVGRW = RPVGRW 157* 158* End of SLA_GBRPVGRW 159* 160 END 161