1*> \brief <b> SSTEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SSTEVR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sstevr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sstevr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sstevr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
22*                          M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
23*                          LIWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          JOBZ, RANGE
27*       INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
28*       REAL               ABSTOL, VL, VU
29*       ..
30*       .. Array Arguments ..
31*       INTEGER            ISUPPZ( * ), IWORK( * )
32*       REAL               D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> SSTEVR computes selected eigenvalues and, optionally, eigenvectors
42*> of a real symmetric tridiagonal matrix T.  Eigenvalues and
43*> eigenvectors can be selected by specifying either a range of values
44*> or a range of indices for the desired eigenvalues.
45*>
46*> Whenever possible, SSTEVR calls SSTEMR to compute the
47*> eigenspectrum using Relatively Robust Representations.  SSTEMR
48*> computes eigenvalues by the dqds algorithm, while orthogonal
49*> eigenvectors are computed from various "good" L D L^T representations
50*> (also known as Relatively Robust Representations). Gram-Schmidt
51*> orthogonalization is avoided as far as possible. More specifically,
52*> the various steps of the algorithm are as follows. For the i-th
53*> unreduced block of T,
54*>    (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T
55*>         is a relatively robust representation,
56*>    (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high
57*>        relative accuracy by the dqds algorithm,
58*>    (c) If there is a cluster of close eigenvalues, "choose" sigma_i
59*>        close to the cluster, and go to step (a),
60*>    (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T,
61*>        compute the corresponding eigenvector by forming a
62*>        rank-revealing twisted factorization.
63*> The desired accuracy of the output can be specified by the input
64*> parameter ABSTOL.
65*>
66*> For more details, see "A new O(n^2) algorithm for the symmetric
67*> tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon,
68*> Computer Science Division Technical Report No. UCB//CSD-97-971,
69*> UC Berkeley, May 1997.
70*>
71*>
72*> Note 1 : SSTEVR calls SSTEMR when the full spectrum is requested
73*> on machines which conform to the ieee-754 floating point standard.
74*> SSTEVR calls SSTEBZ and SSTEIN on non-ieee machines and
75*> when partial spectrum requests are made.
76*>
77*> Normal execution of SSTEMR may create NaNs and infinities and
78*> hence may abort due to a floating point exception in environments
79*> which do not handle NaNs and infinities in the ieee standard default
80*> manner.
81*> \endverbatim
82*
83*  Arguments:
84*  ==========
85*
86*> \param[in] JOBZ
87*> \verbatim
88*>          JOBZ is CHARACTER*1
89*>          = 'N':  Compute eigenvalues only;
90*>          = 'V':  Compute eigenvalues and eigenvectors.
91*> \endverbatim
92*>
93*> \param[in] RANGE
94*> \verbatim
95*>          RANGE is CHARACTER*1
96*>          = 'A': all eigenvalues will be found.
97*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
98*>                 will be found.
99*>          = 'I': the IL-th through IU-th eigenvalues will be found.
100*>          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
101*>          SSTEIN are called
102*> \endverbatim
103*>
104*> \param[in] N
105*> \verbatim
106*>          N is INTEGER
107*>          The order of the matrix.  N >= 0.
108*> \endverbatim
109*>
110*> \param[in,out] D
111*> \verbatim
112*>          D is REAL array, dimension (N)
113*>          On entry, the n diagonal elements of the tridiagonal matrix
114*>          A.
115*>          On exit, D may be multiplied by a constant factor chosen
116*>          to avoid over/underflow in computing the eigenvalues.
117*> \endverbatim
118*>
119*> \param[in,out] E
120*> \verbatim
121*>          E is REAL array, dimension (max(1,N-1))
122*>          On entry, the (n-1) subdiagonal elements of the tridiagonal
123*>          matrix A in elements 1 to N-1 of E.
124*>          On exit, E may be multiplied by a constant factor chosen
125*>          to avoid over/underflow in computing the eigenvalues.
126*> \endverbatim
127*>
128*> \param[in] VL
129*> \verbatim
130*>          VL is REAL
131*>          If RANGE='V', the lower bound of the interval to
132*>          be searched for eigenvalues. VL < VU.
133*>          Not referenced if RANGE = 'A' or 'I'.
134*> \endverbatim
135*>
136*> \param[in] VU
137*> \verbatim
138*>          VU is REAL
139*>          If RANGE='V', the upper bound of the interval to
140*>          be searched for eigenvalues. VL < VU.
141*>          Not referenced if RANGE = 'A' or 'I'.
142*> \endverbatim
143*>
144*> \param[in] IL
145*> \verbatim
146*>          IL is INTEGER
147*>          If RANGE='I', the index of the
148*>          smallest eigenvalue to be returned.
149*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
150*>          Not referenced if RANGE = 'A' or 'V'.
151*> \endverbatim
152*>
153*> \param[in] IU
154*> \verbatim
155*>          IU is INTEGER
156*>          If RANGE='I', the index of the
157*>          largest eigenvalue to be returned.
158*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
159*>          Not referenced if RANGE = 'A' or 'V'.
160*> \endverbatim
161*>
162*> \param[in] ABSTOL
163*> \verbatim
164*>          ABSTOL is REAL
165*>          The absolute error tolerance for the eigenvalues.
166*>          An approximate eigenvalue is accepted as converged
167*>          when it is determined to lie in an interval [a,b]
168*>          of width less than or equal to
169*>
170*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
171*>
172*>          where EPS is the machine precision.  If ABSTOL is less than
173*>          or equal to zero, then  EPS*|T|  will be used in its place,
174*>          where |T| is the 1-norm of the tridiagonal matrix obtained
175*>          by reducing A to tridiagonal form.
176*>
177*>          See "Computing Small Singular Values of Bidiagonal Matrices
178*>          with Guaranteed High Relative Accuracy," by Demmel and
179*>          Kahan, LAPACK Working Note #3.
180*>
181*>          If high relative accuracy is important, set ABSTOL to
182*>          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
183*>          eigenvalues are computed to high relative accuracy when
184*>          possible in future releases.  The current code does not
185*>          make any guarantees about high relative accuracy, but
186*>          future releases will. See J. Barlow and J. Demmel,
187*>          "Computing Accurate Eigensystems of Scaled Diagonally
188*>          Dominant Matrices", LAPACK Working Note #7, for a discussion
189*>          of which matrices define their eigenvalues to high relative
190*>          accuracy.
191*> \endverbatim
192*>
193*> \param[out] M
194*> \verbatim
195*>          M is INTEGER
196*>          The total number of eigenvalues found.  0 <= M <= N.
197*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
198*> \endverbatim
199*>
200*> \param[out] W
201*> \verbatim
202*>          W is REAL array, dimension (N)
203*>          The first M elements contain the selected eigenvalues in
204*>          ascending order.
205*> \endverbatim
206*>
207*> \param[out] Z
208*> \verbatim
209*>          Z is REAL array, dimension (LDZ, max(1,M) )
210*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
211*>          contain the orthonormal eigenvectors of the matrix A
212*>          corresponding to the selected eigenvalues, with the i-th
213*>          column of Z holding the eigenvector associated with W(i).
214*>          Note: the user must ensure that at least max(1,M) columns are
215*>          supplied in the array Z; if RANGE = 'V', the exact value of M
216*>          is not known in advance and an upper bound must be used.
217*> \endverbatim
218*>
219*> \param[in] LDZ
220*> \verbatim
221*>          LDZ is INTEGER
222*>          The leading dimension of the array Z.  LDZ >= 1, and if
223*>          JOBZ = 'V', LDZ >= max(1,N).
224*> \endverbatim
225*>
226*> \param[out] ISUPPZ
227*> \verbatim
228*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
229*>          The support of the eigenvectors in Z, i.e., the indices
230*>          indicating the nonzero elements in Z. The i-th eigenvector
231*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
232*>          ISUPPZ( 2*i ).
233*>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
234*> \endverbatim
235*>
236*> \param[out] WORK
237*> \verbatim
238*>          WORK is REAL array, dimension (MAX(1,LWORK))
239*>          On exit, if INFO = 0, WORK(1) returns the optimal (and
240*>          minimal) LWORK.
241*> \endverbatim
242*>
243*> \param[in] LWORK
244*> \verbatim
245*>          LWORK is INTEGER
246*>          The dimension of the array WORK.  LWORK >= 20*N.
247*>
248*>          If LWORK = -1, then a workspace query is assumed; the routine
249*>          only calculates the optimal sizes of the WORK and IWORK
250*>          arrays, returns these values as the first entries of the WORK
251*>          and IWORK arrays, and no error message related to LWORK or
252*>          LIWORK is issued by XERBLA.
253*> \endverbatim
254*>
255*> \param[out] IWORK
256*> \verbatim
257*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
258*>          On exit, if INFO = 0, IWORK(1) returns the optimal (and
259*>          minimal) LIWORK.
260*> \endverbatim
261*>
262*> \param[in] LIWORK
263*> \verbatim
264*>          LIWORK is INTEGER
265*>          The dimension of the array IWORK.  LIWORK >= 10*N.
266*>
267*>          If LIWORK = -1, then a workspace query is assumed; the
268*>          routine only calculates the optimal sizes of the WORK and
269*>          IWORK arrays, returns these values as the first entries of
270*>          the WORK and IWORK arrays, and no error message related to
271*>          LWORK or LIWORK is issued by XERBLA.
272*> \endverbatim
273*>
274*> \param[out] INFO
275*> \verbatim
276*>          INFO is INTEGER
277*>          = 0:  successful exit
278*>          < 0:  if INFO = -i, the i-th argument had an illegal value
279*>          > 0:  Internal error
280*> \endverbatim
281*
282*  Authors:
283*  ========
284*
285*> \author Univ. of Tennessee
286*> \author Univ. of California Berkeley
287*> \author Univ. of Colorado Denver
288*> \author NAG Ltd.
289*
290*> \ingroup realOTHEReigen
291*
292*> \par Contributors:
293*  ==================
294*>
295*>     Inderjit Dhillon, IBM Almaden, USA \n
296*>     Osni Marques, LBNL/NERSC, USA \n
297*>     Ken Stanley, Computer Science Division, University of
298*>       California at Berkeley, USA \n
299*>     Jason Riedy, Computer Science Division, University of
300*>       California at Berkeley, USA \n
301*>
302*  =====================================================================
303      SUBROUTINE SSTEVR( JOBZ, RANGE, N, D, E, VL, VU, IL, IU, ABSTOL,
304     $                   M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK,
305     $                   LIWORK, INFO )
306*
307*  -- LAPACK driver routine --
308*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
309*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
310*
311*     .. Scalar Arguments ..
312      CHARACTER          JOBZ, RANGE
313      INTEGER            IL, INFO, IU, LDZ, LIWORK, LWORK, M, N
314      REAL               ABSTOL, VL, VU
315*     ..
316*     .. Array Arguments ..
317      INTEGER            ISUPPZ( * ), IWORK( * )
318      REAL               D( * ), E( * ), W( * ), WORK( * ), Z( LDZ, * )
319*     ..
320*
321*  =====================================================================
322*
323*     .. Parameters ..
324      REAL               ZERO, ONE, TWO
325      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
326*     ..
327*     .. Local Scalars ..
328      LOGICAL            ALLEIG, INDEIG, TEST, LQUERY, VALEIG, WANTZ,
329     $                   TRYRAC
330      CHARACTER          ORDER
331      INTEGER            I, IEEEOK, IMAX, INDIBL, INDIFL, INDISP,
332     $                   INDIWO, ISCALE, J, JJ, LIWMIN, LWMIN, NSPLIT
333      REAL               BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA, SMLNUM,
334     $                   TMP1, TNRM, VLL, VUU
335*     ..
336*     .. External Functions ..
337      LOGICAL            LSAME
338      INTEGER            ILAENV
339      REAL               SLAMCH, SLANST
340      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANST
341*     ..
342*     .. External Subroutines ..
343      EXTERNAL           SCOPY, SSCAL, SSTEBZ, SSTEMR, SSTEIN, SSTERF,
344     $                   SSWAP, XERBLA
345*     ..
346*     .. Intrinsic Functions ..
347      INTRINSIC          MAX, MIN, SQRT
348*     ..
349*     .. Executable Statements ..
350*
351*
352*     Test the input parameters.
353*
354      IEEEOK = ILAENV( 10, 'SSTEVR', 'N', 1, 2, 3, 4 )
355*
356      WANTZ = LSAME( JOBZ, 'V' )
357      ALLEIG = LSAME( RANGE, 'A' )
358      VALEIG = LSAME( RANGE, 'V' )
359      INDEIG = LSAME( RANGE, 'I' )
360*
361      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
362      LWMIN = MAX( 1, 20*N )
363      LIWMIN = MAX(1, 10*N )
364*
365*
366      INFO = 0
367      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
368         INFO = -1
369      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
370         INFO = -2
371      ELSE IF( N.LT.0 ) THEN
372         INFO = -3
373      ELSE
374         IF( VALEIG ) THEN
375            IF( N.GT.0 .AND. VU.LE.VL )
376     $         INFO = -7
377         ELSE IF( INDEIG ) THEN
378            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
379               INFO = -8
380            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
381               INFO = -9
382            END IF
383         END IF
384      END IF
385      IF( INFO.EQ.0 ) THEN
386         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
387            INFO = -14
388         END IF
389      END IF
390*
391      IF( INFO.EQ.0 ) THEN
392         WORK( 1 ) = LWMIN
393         IWORK( 1 ) = LIWMIN
394*
395         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
396            INFO = -17
397         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
398            INFO = -19
399         END IF
400      END IF
401*
402      IF( INFO.NE.0 ) THEN
403         CALL XERBLA( 'SSTEVR', -INFO )
404         RETURN
405      ELSE IF( LQUERY ) THEN
406         RETURN
407      END IF
408*
409*     Quick return if possible
410*
411      M = 0
412      IF( N.EQ.0 )
413     $   RETURN
414*
415      IF( N.EQ.1 ) THEN
416         IF( ALLEIG .OR. INDEIG ) THEN
417            M = 1
418            W( 1 ) = D( 1 )
419         ELSE
420            IF( VL.LT.D( 1 ) .AND. VU.GE.D( 1 ) ) THEN
421               M = 1
422               W( 1 ) = D( 1 )
423            END IF
424         END IF
425         IF( WANTZ )
426     $      Z( 1, 1 ) = ONE
427         RETURN
428      END IF
429*
430*     Get machine constants.
431*
432      SAFMIN = SLAMCH( 'Safe minimum' )
433      EPS = SLAMCH( 'Precision' )
434      SMLNUM = SAFMIN / EPS
435      BIGNUM = ONE / SMLNUM
436      RMIN = SQRT( SMLNUM )
437      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
438*
439*
440*     Scale matrix to allowable range, if necessary.
441*
442      ISCALE = 0
443      IF( VALEIG ) THEN
444         VLL = VL
445         VUU = VU
446      END IF
447*
448      TNRM = SLANST( 'M', N, D, E )
449      IF( TNRM.GT.ZERO .AND. TNRM.LT.RMIN ) THEN
450         ISCALE = 1
451         SIGMA = RMIN / TNRM
452      ELSE IF( TNRM.GT.RMAX ) THEN
453         ISCALE = 1
454         SIGMA = RMAX / TNRM
455      END IF
456      IF( ISCALE.EQ.1 ) THEN
457         CALL SSCAL( N, SIGMA, D, 1 )
458         CALL SSCAL( N-1, SIGMA, E( 1 ), 1 )
459         IF( VALEIG ) THEN
460            VLL = VL*SIGMA
461            VUU = VU*SIGMA
462         END IF
463      END IF
464
465*     Initialize indices into workspaces.  Note: These indices are used only
466*     if SSTERF or SSTEMR fail.
467
468*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
469*     stores the block indices of each of the M<=N eigenvalues.
470      INDIBL = 1
471*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
472*     stores the starting and finishing indices of each block.
473      INDISP = INDIBL + N
474*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
475*     that corresponding to eigenvectors that fail to converge in
476*     SSTEIN.  This information is discarded; if any fail, the driver
477*     returns INFO > 0.
478      INDIFL = INDISP + N
479*     INDIWO is the offset of the remaining integer workspace.
480      INDIWO = INDISP + N
481*
482*     If all eigenvalues are desired, then
483*     call SSTERF or SSTEMR.  If this fails for some eigenvalue, then
484*     try SSTEBZ.
485*
486*
487      TEST = .FALSE.
488      IF( INDEIG ) THEN
489         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
490            TEST = .TRUE.
491         END IF
492      END IF
493      IF( ( ALLEIG .OR. TEST ) .AND. IEEEOK.EQ.1 ) THEN
494         CALL SCOPY( N-1, E( 1 ), 1, WORK( 1 ), 1 )
495         IF( .NOT.WANTZ ) THEN
496            CALL SCOPY( N, D, 1, W, 1 )
497            CALL SSTERF( N, W, WORK, INFO )
498         ELSE
499            CALL SCOPY( N, D, 1, WORK( N+1 ), 1 )
500            IF (ABSTOL .LE. TWO*N*EPS) THEN
501               TRYRAC = .TRUE.
502            ELSE
503               TRYRAC = .FALSE.
504            END IF
505            CALL SSTEMR( JOBZ, 'A', N, WORK( N+1 ), WORK, VL, VU, IL,
506     $                   IU, M, W, Z, LDZ, N, ISUPPZ, TRYRAC,
507     $                   WORK( 2*N+1 ), LWORK-2*N, IWORK, LIWORK, INFO )
508*
509         END IF
510         IF( INFO.EQ.0 ) THEN
511            M = N
512            GO TO 10
513         END IF
514         INFO = 0
515      END IF
516*
517*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
518*
519      IF( WANTZ ) THEN
520         ORDER = 'B'
521      ELSE
522         ORDER = 'E'
523      END IF
524
525      CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTOL, D, E, M,
526     $             NSPLIT, W, IWORK( INDIBL ), IWORK( INDISP ), WORK,
527     $             IWORK( INDIWO ), INFO )
528*
529      IF( WANTZ ) THEN
530         CALL SSTEIN( N, D, E, M, W, IWORK( INDIBL ), IWORK( INDISP ),
531     $                Z, LDZ, WORK, IWORK( INDIWO ), IWORK( INDIFL ),
532     $                INFO )
533      END IF
534*
535*     If matrix was scaled, then rescale eigenvalues appropriately.
536*
537   10 CONTINUE
538      IF( ISCALE.EQ.1 ) THEN
539         IF( INFO.EQ.0 ) THEN
540            IMAX = M
541         ELSE
542            IMAX = INFO - 1
543         END IF
544         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
545      END IF
546*
547*     If eigenvalues are not in order, then sort them, along with
548*     eigenvectors.
549*
550      IF( WANTZ ) THEN
551         DO 30 J = 1, M - 1
552            I = 0
553            TMP1 = W( J )
554            DO 20 JJ = J + 1, M
555               IF( W( JJ ).LT.TMP1 ) THEN
556                  I = JJ
557                  TMP1 = W( JJ )
558               END IF
559   20       CONTINUE
560*
561            IF( I.NE.0 ) THEN
562               W( I ) = W( J )
563               W( J ) = TMP1
564               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
565            END IF
566   30    CONTINUE
567      END IF
568*
569*      Causes problems with tests 19 & 20:
570*      IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002
571*
572*
573      WORK( 1 ) = LWMIN
574      IWORK( 1 ) = LIWMIN
575      RETURN
576*
577*     End of SSTEVR
578*
579      END
580