1*> \brief <b> SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SSYEVR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
22*                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
23*                          IWORK, LIWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          JOBZ, RANGE, UPLO
27*       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
28*       REAL               ABSTOL, VL, VU
29*       ..
30*       .. Array Arguments ..
31*       INTEGER            ISUPPZ( * ), IWORK( * )
32*       REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
33*       ..
34*
35*
36*> \par Purpose:
37*  =============
38*>
39*> \verbatim
40*>
41*> SSYEVR computes selected eigenvalues and, optionally, eigenvectors
42*> of a real symmetric matrix A.  Eigenvalues and eigenvectors can be
43*> selected by specifying either a range of values or a range of
44*> indices for the desired eigenvalues.
45*>
46*> SSYEVR first reduces the matrix A to tridiagonal form T with a call
47*> to SSYTRD.  Then, whenever possible, SSYEVR calls SSTEMR to compute
48*> the eigenspectrum using Relatively Robust Representations.  SSTEMR
49*> computes eigenvalues by the dqds algorithm, while orthogonal
50*> eigenvectors are computed from various "good" L D L^T representations
51*> (also known as Relatively Robust Representations). Gram-Schmidt
52*> orthogonalization is avoided as far as possible. More specifically,
53*> the various steps of the algorithm are as follows.
54*>
55*> For each unreduced block (submatrix) of T,
56*>    (a) Compute T - sigma I  = L D L^T, so that L and D
57*>        define all the wanted eigenvalues to high relative accuracy.
58*>        This means that small relative changes in the entries of D and L
59*>        cause only small relative changes in the eigenvalues and
60*>        eigenvectors. The standard (unfactored) representation of the
61*>        tridiagonal matrix T does not have this property in general.
62*>    (b) Compute the eigenvalues to suitable accuracy.
63*>        If the eigenvectors are desired, the algorithm attains full
64*>        accuracy of the computed eigenvalues only right before
65*>        the corresponding vectors have to be computed, see steps c) and d).
66*>    (c) For each cluster of close eigenvalues, select a new
67*>        shift close to the cluster, find a new factorization, and refine
68*>        the shifted eigenvalues to suitable accuracy.
69*>    (d) For each eigenvalue with a large enough relative separation compute
70*>        the corresponding eigenvector by forming a rank revealing twisted
71*>        factorization. Go back to (c) for any clusters that remain.
72*>
73*> The desired accuracy of the output can be specified by the input
74*> parameter ABSTOL.
75*>
76*> For more details, see SSTEMR's documentation and:
77*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
78*>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
79*>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
80*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
81*>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
82*>   2004.  Also LAPACK Working Note 154.
83*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
84*>   tridiagonal eigenvalue/eigenvector problem",
85*>   Computer Science Division Technical Report No. UCB/CSD-97-971,
86*>   UC Berkeley, May 1997.
87*>
88*>
89*> Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested
90*> on machines which conform to the ieee-754 floating point standard.
91*> SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and
92*> when partial spectrum requests are made.
93*>
94*> Normal execution of SSTEMR may create NaNs and infinities and
95*> hence may abort due to a floating point exception in environments
96*> which do not handle NaNs and infinities in the ieee standard default
97*> manner.
98*> \endverbatim
99*
100*  Arguments:
101*  ==========
102*
103*> \param[in] JOBZ
104*> \verbatim
105*>          JOBZ is CHARACTER*1
106*>          = 'N':  Compute eigenvalues only;
107*>          = 'V':  Compute eigenvalues and eigenvectors.
108*> \endverbatim
109*>
110*> \param[in] RANGE
111*> \verbatim
112*>          RANGE is CHARACTER*1
113*>          = 'A': all eigenvalues will be found.
114*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
115*>                 will be found.
116*>          = 'I': the IL-th through IU-th eigenvalues will be found.
117*>          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
118*>          SSTEIN are called
119*> \endverbatim
120*>
121*> \param[in] UPLO
122*> \verbatim
123*>          UPLO is CHARACTER*1
124*>          = 'U':  Upper triangle of A is stored;
125*>          = 'L':  Lower triangle of A is stored.
126*> \endverbatim
127*>
128*> \param[in] N
129*> \verbatim
130*>          N is INTEGER
131*>          The order of the matrix A.  N >= 0.
132*> \endverbatim
133*>
134*> \param[in,out] A
135*> \verbatim
136*>          A is REAL array, dimension (LDA, N)
137*>          On entry, the symmetric matrix A.  If UPLO = 'U', the
138*>          leading N-by-N upper triangular part of A contains the
139*>          upper triangular part of the matrix A.  If UPLO = 'L',
140*>          the leading N-by-N lower triangular part of A contains
141*>          the lower triangular part of the matrix A.
142*>          On exit, the lower triangle (if UPLO='L') or the upper
143*>          triangle (if UPLO='U') of A, including the diagonal, is
144*>          destroyed.
145*> \endverbatim
146*>
147*> \param[in] LDA
148*> \verbatim
149*>          LDA is INTEGER
150*>          The leading dimension of the array A.  LDA >= max(1,N).
151*> \endverbatim
152*>
153*> \param[in] VL
154*> \verbatim
155*>          VL is REAL
156*>          If RANGE='V', the lower bound of the interval to
157*>          be searched for eigenvalues. VL < VU.
158*>          Not referenced if RANGE = 'A' or 'I'.
159*> \endverbatim
160*>
161*> \param[in] VU
162*> \verbatim
163*>          VU is REAL
164*>          If RANGE='V', the upper bound of the interval to
165*>          be searched for eigenvalues. VL < VU.
166*>          Not referenced if RANGE = 'A' or 'I'.
167*> \endverbatim
168*>
169*> \param[in] IL
170*> \verbatim
171*>          IL is INTEGER
172*>          If RANGE='I', the index of the
173*>          smallest eigenvalue to be returned.
174*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
175*>          Not referenced if RANGE = 'A' or 'V'.
176*> \endverbatim
177*>
178*> \param[in] IU
179*> \verbatim
180*>          IU is INTEGER
181*>          If RANGE='I', the index of the
182*>          largest eigenvalue to be returned.
183*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
184*>          Not referenced if RANGE = 'A' or 'V'.
185*> \endverbatim
186*>
187*> \param[in] ABSTOL
188*> \verbatim
189*>          ABSTOL is REAL
190*>          The absolute error tolerance for the eigenvalues.
191*>          An approximate eigenvalue is accepted as converged
192*>          when it is determined to lie in an interval [a,b]
193*>          of width less than or equal to
194*>
195*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
196*>
197*>          where EPS is the machine precision.  If ABSTOL is less than
198*>          or equal to zero, then  EPS*|T|  will be used in its place,
199*>          where |T| is the 1-norm of the tridiagonal matrix obtained
200*>          by reducing A to tridiagonal form.
201*>
202*>          See "Computing Small Singular Values of Bidiagonal Matrices
203*>          with Guaranteed High Relative Accuracy," by Demmel and
204*>          Kahan, LAPACK Working Note #3.
205*>
206*>          If high relative accuracy is important, set ABSTOL to
207*>          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
208*>          eigenvalues are computed to high relative accuracy when
209*>          possible in future releases.  The current code does not
210*>          make any guarantees about high relative accuracy, but
211*>          future releases will. See J. Barlow and J. Demmel,
212*>          "Computing Accurate Eigensystems of Scaled Diagonally
213*>          Dominant Matrices", LAPACK Working Note #7, for a discussion
214*>          of which matrices define their eigenvalues to high relative
215*>          accuracy.
216*> \endverbatim
217*>
218*> \param[out] M
219*> \verbatim
220*>          M is INTEGER
221*>          The total number of eigenvalues found.  0 <= M <= N.
222*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
223*> \endverbatim
224*>
225*> \param[out] W
226*> \verbatim
227*>          W is REAL array, dimension (N)
228*>          The first M elements contain the selected eigenvalues in
229*>          ascending order.
230*> \endverbatim
231*>
232*> \param[out] Z
233*> \verbatim
234*>          Z is REAL array, dimension (LDZ, max(1,M))
235*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
236*>          contain the orthonormal eigenvectors of the matrix A
237*>          corresponding to the selected eigenvalues, with the i-th
238*>          column of Z holding the eigenvector associated with W(i).
239*>          If JOBZ = 'N', then Z is not referenced.
240*>          Note: the user must ensure that at least max(1,M) columns are
241*>          supplied in the array Z; if RANGE = 'V', the exact value of M
242*>          is not known in advance and an upper bound must be used.
243*>          Supplying N columns is always safe.
244*> \endverbatim
245*>
246*> \param[in] LDZ
247*> \verbatim
248*>          LDZ is INTEGER
249*>          The leading dimension of the array Z.  LDZ >= 1, and if
250*>          JOBZ = 'V', LDZ >= max(1,N).
251*> \endverbatim
252*>
253*> \param[out] ISUPPZ
254*> \verbatim
255*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
256*>          The support of the eigenvectors in Z, i.e., the indices
257*>          indicating the nonzero elements in Z. The i-th eigenvector
258*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
259*>          ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal
260*>          matrix). The support of the eigenvectors of A is typically
261*>          1:N because of the orthogonal transformations applied by SORMTR.
262*>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
263*> \endverbatim
264*>
265*> \param[out] WORK
266*> \verbatim
267*>          WORK is REAL array, dimension (MAX(1,LWORK))
268*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
269*> \endverbatim
270*>
271*> \param[in] LWORK
272*> \verbatim
273*>          LWORK is INTEGER
274*>          The dimension of the array WORK.  LWORK >= max(1,26*N).
275*>          For optimal efficiency, LWORK >= (NB+6)*N,
276*>          where NB is the max of the blocksize for SSYTRD and SORMTR
277*>          returned by ILAENV.
278*>
279*>          If LWORK = -1, then a workspace query is assumed; the routine
280*>          only calculates the optimal sizes of the WORK and IWORK
281*>          arrays, returns these values as the first entries of the WORK
282*>          and IWORK arrays, and no error message related to LWORK or
283*>          LIWORK is issued by XERBLA.
284*> \endverbatim
285*>
286*> \param[out] IWORK
287*> \verbatim
288*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
289*>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
290*> \endverbatim
291*>
292*> \param[in] LIWORK
293*> \verbatim
294*>          LIWORK is INTEGER
295*>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
296*>
297*>          If LIWORK = -1, then a workspace query is assumed; the
298*>          routine only calculates the optimal sizes of the WORK and
299*>          IWORK arrays, returns these values as the first entries of
300*>          the WORK and IWORK arrays, and no error message related to
301*>          LWORK or LIWORK is issued by XERBLA.
302*> \endverbatim
303*>
304*> \param[out] INFO
305*> \verbatim
306*>          INFO is INTEGER
307*>          = 0:  successful exit
308*>          < 0:  if INFO = -i, the i-th argument had an illegal value
309*>          > 0:  Internal error
310*> \endverbatim
311*
312*  Authors:
313*  ========
314*
315*> \author Univ. of Tennessee
316*> \author Univ. of California Berkeley
317*> \author Univ. of Colorado Denver
318*> \author NAG Ltd.
319*
320*> \ingroup realSYeigen
321*
322*> \par Contributors:
323*  ==================
324*>
325*>     Inderjit Dhillon, IBM Almaden, USA \n
326*>     Osni Marques, LBNL/NERSC, USA \n
327*>     Ken Stanley, Computer Science Division, University of
328*>       California at Berkeley, USA \n
329*>     Jason Riedy, Computer Science Division, University of
330*>       California at Berkeley, USA \n
331*>
332*  =====================================================================
333      SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU,
334     $                   ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK,
335     $                   IWORK, LIWORK, INFO )
336*
337*  -- LAPACK driver routine --
338*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
339*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
340*
341*     .. Scalar Arguments ..
342      CHARACTER          JOBZ, RANGE, UPLO
343      INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
344      REAL               ABSTOL, VL, VU
345*     ..
346*     .. Array Arguments ..
347      INTEGER            ISUPPZ( * ), IWORK( * )
348      REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
349*     ..
350*
351* =====================================================================
352*
353*     .. Parameters ..
354      REAL               ZERO, ONE, TWO
355      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
356*     ..
357*     .. Local Scalars ..
358      LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
359     $                   WANTZ, TRYRAC
360      CHARACTER          ORDER
361      INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
362     $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
363     $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
364     $                   LLWORK, LLWRKN, LWKOPT, LWMIN, NB, NSPLIT
365      REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
366     $                   SIGMA, SMLNUM, TMP1, VLL, VUU
367*     ..
368*     .. External Functions ..
369      LOGICAL            LSAME
370      INTEGER            ILAENV
371      REAL               SLAMCH, SLANSY
372      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANSY
373*     ..
374*     .. External Subroutines ..
375      EXTERNAL           SCOPY, SORMTR, SSCAL, SSTEBZ, SSTEMR, SSTEIN,
376     $                   SSTERF, SSWAP, SSYTRD, XERBLA
377*     ..
378*     .. Intrinsic Functions ..
379      INTRINSIC          MAX, MIN, SQRT
380*     ..
381*     .. Executable Statements ..
382*
383*     Test the input parameters.
384*
385      IEEEOK = ILAENV( 10, 'SSYEVR', 'N', 1, 2, 3, 4 )
386*
387      LOWER = LSAME( UPLO, 'L' )
388      WANTZ = LSAME( JOBZ, 'V' )
389      ALLEIG = LSAME( RANGE, 'A' )
390      VALEIG = LSAME( RANGE, 'V' )
391      INDEIG = LSAME( RANGE, 'I' )
392*
393      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
394*
395      LWMIN = MAX( 1, 26*N )
396      LIWMIN = MAX( 1, 10*N )
397*
398      INFO = 0
399      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
400         INFO = -1
401      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
402         INFO = -2
403      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
404         INFO = -3
405      ELSE IF( N.LT.0 ) THEN
406         INFO = -4
407      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
408         INFO = -6
409      ELSE
410         IF( VALEIG ) THEN
411            IF( N.GT.0 .AND. VU.LE.VL )
412     $         INFO = -8
413         ELSE IF( INDEIG ) THEN
414            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
415               INFO = -9
416            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
417               INFO = -10
418            END IF
419         END IF
420      END IF
421      IF( INFO.EQ.0 ) THEN
422         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
423            INFO = -15
424         END IF
425      END IF
426*
427      IF( INFO.EQ.0 ) THEN
428         NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
429         NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) )
430         LWKOPT = MAX( ( NB+1 )*N, LWMIN )
431         WORK( 1 ) = LWKOPT
432         IWORK( 1 ) = LIWMIN
433*
434         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
435            INFO = -18
436         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
437            INFO = -20
438         END IF
439      END IF
440*
441      IF( INFO.NE.0 ) THEN
442         CALL XERBLA( 'SSYEVR', -INFO )
443         RETURN
444      ELSE IF( LQUERY ) THEN
445         RETURN
446      END IF
447*
448*     Quick return if possible
449*
450      M = 0
451      IF( N.EQ.0 ) THEN
452         WORK( 1 ) = 1
453         RETURN
454      END IF
455*
456      IF( N.EQ.1 ) THEN
457         WORK( 1 ) = 26
458         IF( ALLEIG .OR. INDEIG ) THEN
459            M = 1
460            W( 1 ) = A( 1, 1 )
461         ELSE
462            IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
463               M = 1
464               W( 1 ) = A( 1, 1 )
465            END IF
466         END IF
467         IF( WANTZ ) THEN
468            Z( 1, 1 ) = ONE
469            ISUPPZ( 1 ) = 1
470            ISUPPZ( 2 ) = 1
471         END IF
472         RETURN
473      END IF
474*
475*     Get machine constants.
476*
477      SAFMIN = SLAMCH( 'Safe minimum' )
478      EPS = SLAMCH( 'Precision' )
479      SMLNUM = SAFMIN / EPS
480      BIGNUM = ONE / SMLNUM
481      RMIN = SQRT( SMLNUM )
482      RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
483*
484*     Scale matrix to allowable range, if necessary.
485*
486      ISCALE = 0
487      ABSTLL = ABSTOL
488      IF (VALEIG) THEN
489         VLL = VL
490         VUU = VU
491      END IF
492      ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
493      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
494         ISCALE = 1
495         SIGMA = RMIN / ANRM
496      ELSE IF( ANRM.GT.RMAX ) THEN
497         ISCALE = 1
498         SIGMA = RMAX / ANRM
499      END IF
500      IF( ISCALE.EQ.1 ) THEN
501         IF( LOWER ) THEN
502            DO 10 J = 1, N
503               CALL SSCAL( N-J+1, SIGMA, A( J, J ), 1 )
504   10       CONTINUE
505         ELSE
506            DO 20 J = 1, N
507               CALL SSCAL( J, SIGMA, A( 1, J ), 1 )
508   20       CONTINUE
509         END IF
510         IF( ABSTOL.GT.0 )
511     $      ABSTLL = ABSTOL*SIGMA
512         IF( VALEIG ) THEN
513            VLL = VL*SIGMA
514            VUU = VU*SIGMA
515         END IF
516      END IF
517
518*     Initialize indices into workspaces.  Note: The IWORK indices are
519*     used only if SSTERF or SSTEMR fail.
520
521*     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
522*     elementary reflectors used in SSYTRD.
523      INDTAU = 1
524*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
525      INDD = INDTAU + N
526*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
527*     tridiagonal matrix from SSYTRD.
528      INDE = INDD + N
529*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
530*     -written by SSTEMR (the SSTERF path copies the diagonal to W).
531      INDDD = INDE + N
532*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
533*     -written while computing the eigenvalues in SSTERF and SSTEMR.
534      INDEE = INDDD + N
535*     INDWK is the starting offset of the left-over workspace, and
536*     LLWORK is the remaining workspace size.
537      INDWK = INDEE + N
538      LLWORK = LWORK - INDWK + 1
539
540*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
541*     stores the block indices of each of the M<=N eigenvalues.
542      INDIBL = 1
543*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
544*     stores the starting and finishing indices of each block.
545      INDISP = INDIBL + N
546*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
547*     that corresponding to eigenvectors that fail to converge in
548*     SSTEIN.  This information is discarded; if any fail, the driver
549*     returns INFO > 0.
550      INDIFL = INDISP + N
551*     INDIWO is the offset of the remaining integer workspace.
552      INDIWO = INDIFL + N
553
554*
555*     Call SSYTRD to reduce symmetric matrix to tridiagonal form.
556*
557      CALL SSYTRD( UPLO, N, A, LDA, WORK( INDD ), WORK( INDE ),
558     $             WORK( INDTAU ), WORK( INDWK ), LLWORK, IINFO )
559*
560*     If all eigenvalues are desired
561*     then call SSTERF or SSTEMR and SORMTR.
562*
563      TEST = .FALSE.
564      IF( INDEIG ) THEN
565         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
566            TEST = .TRUE.
567         END IF
568      END IF
569      IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
570         IF( .NOT.WANTZ ) THEN
571            CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
572            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
573            CALL SSTERF( N, W, WORK( INDEE ), INFO )
574         ELSE
575            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
576            CALL SCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
577*
578            IF (ABSTOL .LE. TWO*N*EPS) THEN
579               TRYRAC = .TRUE.
580            ELSE
581               TRYRAC = .FALSE.
582            END IF
583            CALL SSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
584     $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
585     $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
586     $                   INFO )
587*
588*
589*
590*        Apply orthogonal matrix used in reduction to tridiagonal
591*        form to eigenvectors returned by SSTEMR.
592*
593            IF( WANTZ .AND. INFO.EQ.0 ) THEN
594               INDWKN = INDE
595               LLWRKN = LWORK - INDWKN + 1
596               CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA,
597     $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
598     $                      LLWRKN, IINFO )
599            END IF
600         END IF
601*
602*
603         IF( INFO.EQ.0 ) THEN
604*           Everything worked.  Skip SSTEBZ/SSTEIN.  IWORK(:) are
605*           undefined.
606            M = N
607            GO TO 30
608         END IF
609         INFO = 0
610      END IF
611*
612*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
613*     Also call SSTEBZ and SSTEIN if SSTEMR fails.
614*
615      IF( WANTZ ) THEN
616         ORDER = 'B'
617      ELSE
618         ORDER = 'E'
619      END IF
620
621      CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
622     $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
623     $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
624     $             IWORK( INDIWO ), INFO )
625*
626      IF( WANTZ ) THEN
627         CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
628     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
629     $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
630     $                INFO )
631*
632*        Apply orthogonal matrix used in reduction to tridiagonal
633*        form to eigenvectors returned by SSTEIN.
634*
635         INDWKN = INDE
636         LLWRKN = LWORK - INDWKN + 1
637         CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
638     $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
639      END IF
640*
641*     If matrix was scaled, then rescale eigenvalues appropriately.
642*
643*  Jump here if SSTEMR/SSTEIN succeeded.
644   30 CONTINUE
645      IF( ISCALE.EQ.1 ) THEN
646         IF( INFO.EQ.0 ) THEN
647            IMAX = M
648         ELSE
649            IMAX = INFO - 1
650         END IF
651         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
652      END IF
653*
654*     If eigenvalues are not in order, then sort them, along with
655*     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
656*     It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do
657*     not return this detailed information to the user.
658*
659      IF( WANTZ ) THEN
660         DO 50 J = 1, M - 1
661            I = 0
662            TMP1 = W( J )
663            DO 40 JJ = J + 1, M
664               IF( W( JJ ).LT.TMP1 ) THEN
665                  I = JJ
666                  TMP1 = W( JJ )
667               END IF
668   40       CONTINUE
669*
670            IF( I.NE.0 ) THEN
671               W( I ) = W( J )
672               W( J ) = TMP1
673               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
674            END IF
675   50    CONTINUE
676      END IF
677*
678*     Set WORK(1) to optimal workspace size.
679*
680      WORK( 1 ) = LWKOPT
681      IWORK( 1 ) = LIWMIN
682*
683      RETURN
684*
685*     End of SSYEVR
686*
687      END
688