1*> \brief \b STGSEN
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download STGSEN + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsen.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsen.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsen.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE STGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
22*                          ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
23*                          PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       LOGICAL            WANTQ, WANTZ
27*       INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
28*      $                   M, N
29*       REAL               PL, PR
30*       ..
31*       .. Array Arguments ..
32*       LOGICAL            SELECT( * )
33*       INTEGER            IWORK( * )
34*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
35*      $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
36*      $                   WORK( * ), Z( LDZ, * )
37*       ..
38*
39*
40*> \par Purpose:
41*  =============
42*>
43*> \verbatim
44*>
45*> STGSEN reorders the generalized real Schur decomposition of a real
46*> matrix pair (A, B) (in terms of an orthonormal equivalence trans-
47*> formation Q**T * (A, B) * Z), so that a selected cluster of eigenvalues
48*> appears in the leading diagonal blocks of the upper quasi-triangular
49*> matrix A and the upper triangular B. The leading columns of Q and
50*> Z form orthonormal bases of the corresponding left and right eigen-
51*> spaces (deflating subspaces). (A, B) must be in generalized real
52*> Schur canonical form (as returned by SGGES), i.e. A is block upper
53*> triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper
54*> triangular.
55*>
56*> STGSEN also computes the generalized eigenvalues
57*>
58*>             w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j)
59*>
60*> of the reordered matrix pair (A, B).
61*>
62*> Optionally, STGSEN computes the estimates of reciprocal condition
63*> numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11),
64*> (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s)
65*> between the matrix pairs (A11, B11) and (A22,B22) that correspond to
66*> the selected cluster and the eigenvalues outside the cluster, resp.,
67*> and norms of "projections" onto left and right eigenspaces w.r.t.
68*> the selected cluster in the (1,1)-block.
69*> \endverbatim
70*
71*  Arguments:
72*  ==========
73*
74*> \param[in] IJOB
75*> \verbatim
76*>          IJOB is INTEGER
77*>          Specifies whether condition numbers are required for the
78*>          cluster of eigenvalues (PL and PR) or the deflating subspaces
79*>          (Difu and Difl):
80*>           =0: Only reorder w.r.t. SELECT. No extras.
81*>           =1: Reciprocal of norms of "projections" onto left and right
82*>               eigenspaces w.r.t. the selected cluster (PL and PR).
83*>           =2: Upper bounds on Difu and Difl. F-norm-based estimate
84*>               (DIF(1:2)).
85*>           =3: Estimate of Difu and Difl. 1-norm-based estimate
86*>               (DIF(1:2)).
87*>               About 5 times as expensive as IJOB = 2.
88*>           =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic
89*>               version to get it all.
90*>           =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above)
91*> \endverbatim
92*>
93*> \param[in] WANTQ
94*> \verbatim
95*>          WANTQ is LOGICAL
96*>          .TRUE. : update the left transformation matrix Q;
97*>          .FALSE.: do not update Q.
98*> \endverbatim
99*>
100*> \param[in] WANTZ
101*> \verbatim
102*>          WANTZ is LOGICAL
103*>          .TRUE. : update the right transformation matrix Z;
104*>          .FALSE.: do not update Z.
105*> \endverbatim
106*>
107*> \param[in] SELECT
108*> \verbatim
109*>          SELECT is LOGICAL array, dimension (N)
110*>          SELECT specifies the eigenvalues in the selected cluster.
111*>          To select a real eigenvalue w(j), SELECT(j) must be set to
112*>          .TRUE.. To select a complex conjugate pair of eigenvalues
113*>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
114*>          either SELECT(j) or SELECT(j+1) or both must be set to
115*>          .TRUE.; a complex conjugate pair of eigenvalues must be
116*>          either both included in the cluster or both excluded.
117*> \endverbatim
118*>
119*> \param[in] N
120*> \verbatim
121*>          N is INTEGER
122*>          The order of the matrices A and B. N >= 0.
123*> \endverbatim
124*>
125*> \param[in,out] A
126*> \verbatim
127*>          A is REAL array, dimension(LDA,N)
128*>          On entry, the upper quasi-triangular matrix A, with (A, B) in
129*>          generalized real Schur canonical form.
130*>          On exit, A is overwritten by the reordered matrix A.
131*> \endverbatim
132*>
133*> \param[in] LDA
134*> \verbatim
135*>          LDA is INTEGER
136*>          The leading dimension of the array A. LDA >= max(1,N).
137*> \endverbatim
138*>
139*> \param[in,out] B
140*> \verbatim
141*>          B is REAL array, dimension(LDB,N)
142*>          On entry, the upper triangular matrix B, with (A, B) in
143*>          generalized real Schur canonical form.
144*>          On exit, B is overwritten by the reordered matrix B.
145*> \endverbatim
146*>
147*> \param[in] LDB
148*> \verbatim
149*>          LDB is INTEGER
150*>          The leading dimension of the array B. LDB >= max(1,N).
151*> \endverbatim
152*>
153*> \param[out] ALPHAR
154*> \verbatim
155*>          ALPHAR is REAL array, dimension (N)
156*> \endverbatim
157*>
158*> \param[out] ALPHAI
159*> \verbatim
160*>          ALPHAI is REAL array, dimension (N)
161*> \endverbatim
162*>
163*> \param[out] BETA
164*> \verbatim
165*>          BETA is REAL array, dimension (N)
166*>
167*>          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
168*>          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i
169*>          and BETA(j),j=1,...,N  are the diagonals of the complex Schur
170*>          form (S,T) that would result if the 2-by-2 diagonal blocks of
171*>          the real generalized Schur form of (A,B) were further reduced
172*>          to triangular form using complex unitary transformations.
173*>          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if
174*>          positive, then the j-th and (j+1)-st eigenvalues are a
175*>          complex conjugate pair, with ALPHAI(j+1) negative.
176*> \endverbatim
177*>
178*> \param[in,out] Q
179*> \verbatim
180*>          Q is REAL array, dimension (LDQ,N)
181*>          On entry, if WANTQ = .TRUE., Q is an N-by-N matrix.
182*>          On exit, Q has been postmultiplied by the left orthogonal
183*>          transformation matrix which reorder (A, B); The leading M
184*>          columns of Q form orthonormal bases for the specified pair of
185*>          left eigenspaces (deflating subspaces).
186*>          If WANTQ = .FALSE., Q is not referenced.
187*> \endverbatim
188*>
189*> \param[in] LDQ
190*> \verbatim
191*>          LDQ is INTEGER
192*>          The leading dimension of the array Q.  LDQ >= 1;
193*>          and if WANTQ = .TRUE., LDQ >= N.
194*> \endverbatim
195*>
196*> \param[in,out] Z
197*> \verbatim
198*>          Z is REAL array, dimension (LDZ,N)
199*>          On entry, if WANTZ = .TRUE., Z is an N-by-N matrix.
200*>          On exit, Z has been postmultiplied by the left orthogonal
201*>          transformation matrix which reorder (A, B); The leading M
202*>          columns of Z form orthonormal bases for the specified pair of
203*>          left eigenspaces (deflating subspaces).
204*>          If WANTZ = .FALSE., Z is not referenced.
205*> \endverbatim
206*>
207*> \param[in] LDZ
208*> \verbatim
209*>          LDZ is INTEGER
210*>          The leading dimension of the array Z. LDZ >= 1;
211*>          If WANTZ = .TRUE., LDZ >= N.
212*> \endverbatim
213*>
214*> \param[out] M
215*> \verbatim
216*>          M is INTEGER
217*>          The dimension of the specified pair of left and right eigen-
218*>          spaces (deflating subspaces). 0 <= M <= N.
219*> \endverbatim
220*>
221*> \param[out] PL
222*> \verbatim
223*>          PL is REAL
224*> \endverbatim
225*>
226*> \param[out] PR
227*> \verbatim
228*>          PR is REAL
229*>
230*>          If IJOB = 1, 4 or 5, PL, PR are lower bounds on the
231*>          reciprocal of the norm of "projections" onto left and right
232*>          eigenspaces with respect to the selected cluster.
233*>          0 < PL, PR <= 1.
234*>          If M = 0 or M = N, PL = PR  = 1.
235*>          If IJOB = 0, 2 or 3, PL and PR are not referenced.
236*> \endverbatim
237*>
238*> \param[out] DIF
239*> \verbatim
240*>          DIF is REAL array, dimension (2).
241*>          If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl.
242*>          If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on
243*>          Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based
244*>          estimates of Difu and Difl.
245*>          If M = 0 or N, DIF(1:2) = F-norm([A, B]).
246*>          If IJOB = 0 or 1, DIF is not referenced.
247*> \endverbatim
248*>
249*> \param[out] WORK
250*> \verbatim
251*>          WORK is REAL array, dimension (MAX(1,LWORK))
252*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
253*> \endverbatim
254*>
255*> \param[in] LWORK
256*> \verbatim
257*>          LWORK is INTEGER
258*>          The dimension of the array WORK. LWORK >=  4*N+16.
259*>          If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)).
260*>          If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)).
261*>
262*>          If LWORK = -1, then a workspace query is assumed; the routine
263*>          only calculates the optimal size of the WORK array, returns
264*>          this value as the first entry of the WORK array, and no error
265*>          message related to LWORK is issued by XERBLA.
266*> \endverbatim
267*>
268*> \param[out] IWORK
269*> \verbatim
270*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
271*>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
272*> \endverbatim
273*>
274*> \param[in] LIWORK
275*> \verbatim
276*>          LIWORK is INTEGER
277*>          The dimension of the array IWORK. LIWORK >= 1.
278*>          If IJOB = 1, 2 or 4, LIWORK >=  N+6.
279*>          If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6).
280*>
281*>          If LIWORK = -1, then a workspace query is assumed; the
282*>          routine only calculates the optimal size of the IWORK array,
283*>          returns this value as the first entry of the IWORK array, and
284*>          no error message related to LIWORK is issued by XERBLA.
285*> \endverbatim
286*>
287*> \param[out] INFO
288*> \verbatim
289*>          INFO is INTEGER
290*>            =0: Successful exit.
291*>            <0: If INFO = -i, the i-th argument had an illegal value.
292*>            =1: Reordering of (A, B) failed because the transformed
293*>                matrix pair (A, B) would be too far from generalized
294*>                Schur form; the problem is very ill-conditioned.
295*>                (A, B) may have been partially reordered.
296*>                If requested, 0 is returned in DIF(*), PL and PR.
297*> \endverbatim
298*
299*  Authors:
300*  ========
301*
302*> \author Univ. of Tennessee
303*> \author Univ. of California Berkeley
304*> \author Univ. of Colorado Denver
305*> \author NAG Ltd.
306*
307*> \ingroup realOTHERcomputational
308*
309*> \par Further Details:
310*  =====================
311*>
312*> \verbatim
313*>
314*>  STGSEN first collects the selected eigenvalues by computing
315*>  orthogonal U and W that move them to the top left corner of (A, B).
316*>  In other words, the selected eigenvalues are the eigenvalues of
317*>  (A11, B11) in:
318*>
319*>              U**T*(A, B)*W = (A11 A12) (B11 B12) n1
320*>                              ( 0  A22),( 0  B22) n2
321*>                                n1  n2    n1  n2
322*>
323*>  where N = n1+n2 and U**T means the transpose of U. The first n1 columns
324*>  of U and W span the specified pair of left and right eigenspaces
325*>  (deflating subspaces) of (A, B).
326*>
327*>  If (A, B) has been obtained from the generalized real Schur
328*>  decomposition of a matrix pair (C, D) = Q*(A, B)*Z**T, then the
329*>  reordered generalized real Schur form of (C, D) is given by
330*>
331*>           (C, D) = (Q*U)*(U**T*(A, B)*W)*(Z*W)**T,
332*>
333*>  and the first n1 columns of Q*U and Z*W span the corresponding
334*>  deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.).
335*>
336*>  Note that if the selected eigenvalue is sufficiently ill-conditioned,
337*>  then its value may differ significantly from its value before
338*>  reordering.
339*>
340*>  The reciprocal condition numbers of the left and right eigenspaces
341*>  spanned by the first n1 columns of U and W (or Q*U and Z*W) may
342*>  be returned in DIF(1:2), corresponding to Difu and Difl, resp.
343*>
344*>  The Difu and Difl are defined as:
345*>
346*>       Difu[(A11, B11), (A22, B22)] = sigma-min( Zu )
347*>  and
348*>       Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)],
349*>
350*>  where sigma-min(Zu) is the smallest singular value of the
351*>  (2*n1*n2)-by-(2*n1*n2) matrix
352*>
353*>       Zu = [ kron(In2, A11)  -kron(A22**T, In1) ]
354*>            [ kron(In2, B11)  -kron(B22**T, In1) ].
355*>
356*>  Here, Inx is the identity matrix of size nx and A22**T is the
357*>  transpose of A22. kron(X, Y) is the Kronecker product between
358*>  the matrices X and Y.
359*>
360*>  When DIF(2) is small, small changes in (A, B) can cause large changes
361*>  in the deflating subspace. An approximate (asymptotic) bound on the
362*>  maximum angular error in the computed deflating subspaces is
363*>
364*>       EPS * norm((A, B)) / DIF(2),
365*>
366*>  where EPS is the machine precision.
367*>
368*>  The reciprocal norm of the projectors on the left and right
369*>  eigenspaces associated with (A11, B11) may be returned in PL and PR.
370*>  They are computed as follows. First we compute L and R so that
371*>  P*(A, B)*Q is block diagonal, where
372*>
373*>       P = ( I -L ) n1           Q = ( I R ) n1
374*>           ( 0  I ) n2    and        ( 0 I ) n2
375*>             n1 n2                    n1 n2
376*>
377*>  and (L, R) is the solution to the generalized Sylvester equation
378*>
379*>       A11*R - L*A22 = -A12
380*>       B11*R - L*B22 = -B12
381*>
382*>  Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2).
383*>  An approximate (asymptotic) bound on the average absolute error of
384*>  the selected eigenvalues is
385*>
386*>       EPS * norm((A, B)) / PL.
387*>
388*>  There are also global error bounds which valid for perturbations up
389*>  to a certain restriction:  A lower bound (x) on the smallest
390*>  F-norm(E,F) for which an eigenvalue of (A11, B11) may move and
391*>  coalesce with an eigenvalue of (A22, B22) under perturbation (E,F),
392*>  (i.e. (A + E, B + F), is
393*>
394*>   x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)).
395*>
396*>  An approximate bound on x can be computed from DIF(1:2), PL and PR.
397*>
398*>  If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed
399*>  (L', R') and unperturbed (L, R) left and right deflating subspaces
400*>  associated with the selected cluster in the (1,1)-blocks can be
401*>  bounded as
402*>
403*>   max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2))
404*>   max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2))
405*>
406*>  See LAPACK User's Guide section 4.11 or the following references
407*>  for more information.
408*>
409*>  Note that if the default method for computing the Frobenius-norm-
410*>  based estimate DIF is not wanted (see SLATDF), then the parameter
411*>  IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF
412*>  (IJOB = 2 will be used)). See STGSYL for more details.
413*> \endverbatim
414*
415*> \par Contributors:
416*  ==================
417*>
418*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
419*>     Umea University, S-901 87 Umea, Sweden.
420*
421*> \par References:
422*  ================
423*>
424*> \verbatim
425*>
426*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
427*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
428*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
429*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
430*>
431*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
432*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
433*>      Estimation: Theory, Algorithms and Software,
434*>      Report UMINF - 94.04, Department of Computing Science, Umea
435*>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
436*>      Note 87. To appear in Numerical Algorithms, 1996.
437*>
438*>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
439*>      for Solving the Generalized Sylvester Equation and Estimating the
440*>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
441*>      Department of Computing Science, Umea University, S-901 87 Umea,
442*>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
443*>      Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1,
444*>      1996.
445*> \endverbatim
446*>
447*  =====================================================================
448      SUBROUTINE STGSEN( IJOB, WANTQ, WANTZ, SELECT, N, A, LDA, B, LDB,
449     $                   ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDZ, M, PL,
450     $                   PR, DIF, WORK, LWORK, IWORK, LIWORK, INFO )
451*
452*  -- LAPACK computational routine --
453*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
454*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
455*
456*     .. Scalar Arguments ..
457      LOGICAL            WANTQ, WANTZ
458      INTEGER            IJOB, INFO, LDA, LDB, LDQ, LDZ, LIWORK, LWORK,
459     $                   M, N
460      REAL               PL, PR
461*     ..
462*     .. Array Arguments ..
463      LOGICAL            SELECT( * )
464      INTEGER            IWORK( * )
465      REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
466     $                   B( LDB, * ), BETA( * ), DIF( * ), Q( LDQ, * ),
467     $                   WORK( * ), Z( LDZ, * )
468*     ..
469*
470*  =====================================================================
471*
472*     .. Parameters ..
473      INTEGER            IDIFJB
474      PARAMETER          ( IDIFJB = 3 )
475      REAL               ZERO, ONE
476      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
477*     ..
478*     .. Local Scalars ..
479      LOGICAL            LQUERY, PAIR, SWAP, WANTD, WANTD1, WANTD2,
480     $                   WANTP
481      INTEGER            I, IERR, IJB, K, KASE, KK, KS, LIWMIN, LWMIN,
482     $                   MN2, N1, N2
483      REAL               DSCALE, DSUM, EPS, RDSCAL, SMLNUM
484*     ..
485*     .. Local Arrays ..
486      INTEGER            ISAVE( 3 )
487*     ..
488*     .. External Subroutines ..
489      EXTERNAL           SLACN2, SLACPY, SLAG2, SLASSQ, STGEXC, STGSYL,
490     $                   XERBLA
491*     ..
492*     .. External Functions ..
493      REAL               SLAMCH
494      EXTERNAL           SLAMCH
495*     ..
496*     .. Intrinsic Functions ..
497      INTRINSIC          MAX, SIGN, SQRT
498*     ..
499*     .. Executable Statements ..
500*
501*     Decode and test the input parameters
502*
503      INFO = 0
504      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
505*
506      IF( IJOB.LT.0 .OR. IJOB.GT.5 ) THEN
507         INFO = -1
508      ELSE IF( N.LT.0 ) THEN
509         INFO = -5
510      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
511         INFO = -7
512      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
513         INFO = -9
514      ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
515         INFO = -14
516      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
517         INFO = -16
518      END IF
519*
520      IF( INFO.NE.0 ) THEN
521         CALL XERBLA( 'STGSEN', -INFO )
522         RETURN
523      END IF
524*
525*     Get machine constants
526*
527      EPS = SLAMCH( 'P' )
528      SMLNUM = SLAMCH( 'S' ) / EPS
529      IERR = 0
530*
531      WANTP = IJOB.EQ.1 .OR. IJOB.GE.4
532      WANTD1 = IJOB.EQ.2 .OR. IJOB.EQ.4
533      WANTD2 = IJOB.EQ.3 .OR. IJOB.EQ.5
534      WANTD = WANTD1 .OR. WANTD2
535*
536*     Set M to the dimension of the specified pair of deflating
537*     subspaces.
538*
539      M = 0
540      PAIR = .FALSE.
541      IF( .NOT.LQUERY .OR. IJOB.NE.0 ) THEN
542      DO 10 K = 1, N
543         IF( PAIR ) THEN
544            PAIR = .FALSE.
545         ELSE
546            IF( K.LT.N ) THEN
547               IF( A( K+1, K ).EQ.ZERO ) THEN
548                  IF( SELECT( K ) )
549     $               M = M + 1
550               ELSE
551                  PAIR = .TRUE.
552                  IF( SELECT( K ) .OR. SELECT( K+1 ) )
553     $               M = M + 2
554               END IF
555            ELSE
556               IF( SELECT( N ) )
557     $            M = M + 1
558            END IF
559         END IF
560   10 CONTINUE
561      END IF
562*
563      IF( IJOB.EQ.1 .OR. IJOB.EQ.2 .OR. IJOB.EQ.4 ) THEN
564         LWMIN = MAX( 1, 4*N+16, 2*M*(N-M) )
565         LIWMIN = MAX( 1, N+6 )
566      ELSE IF( IJOB.EQ.3 .OR. IJOB.EQ.5 ) THEN
567         LWMIN = MAX( 1, 4*N+16, 4*M*(N-M) )
568         LIWMIN = MAX( 1, 2*M*(N-M), N+6 )
569      ELSE
570         LWMIN = MAX( 1, 4*N+16 )
571         LIWMIN = 1
572      END IF
573*
574      WORK( 1 ) = LWMIN
575      IWORK( 1 ) = LIWMIN
576*
577      IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
578         INFO = -22
579      ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
580         INFO = -24
581      END IF
582*
583      IF( INFO.NE.0 ) THEN
584         CALL XERBLA( 'STGSEN', -INFO )
585         RETURN
586      ELSE IF( LQUERY ) THEN
587         RETURN
588      END IF
589*
590*     Quick return if possible.
591*
592      IF( M.EQ.N .OR. M.EQ.0 ) THEN
593         IF( WANTP ) THEN
594            PL = ONE
595            PR = ONE
596         END IF
597         IF( WANTD ) THEN
598            DSCALE = ZERO
599            DSUM = ONE
600            DO 20 I = 1, N
601               CALL SLASSQ( N, A( 1, I ), 1, DSCALE, DSUM )
602               CALL SLASSQ( N, B( 1, I ), 1, DSCALE, DSUM )
603   20       CONTINUE
604            DIF( 1 ) = DSCALE*SQRT( DSUM )
605            DIF( 2 ) = DIF( 1 )
606         END IF
607         GO TO 60
608      END IF
609*
610*     Collect the selected blocks at the top-left corner of (A, B).
611*
612      KS = 0
613      PAIR = .FALSE.
614      DO 30 K = 1, N
615         IF( PAIR ) THEN
616            PAIR = .FALSE.
617         ELSE
618*
619            SWAP = SELECT( K )
620            IF( K.LT.N ) THEN
621               IF( A( K+1, K ).NE.ZERO ) THEN
622                  PAIR = .TRUE.
623                  SWAP = SWAP .OR. SELECT( K+1 )
624               END IF
625            END IF
626*
627            IF( SWAP ) THEN
628               KS = KS + 1
629*
630*              Swap the K-th block to position KS.
631*              Perform the reordering of diagonal blocks in (A, B)
632*              by orthogonal transformation matrices and update
633*              Q and Z accordingly (if requested):
634*
635               KK = K
636               IF( K.NE.KS )
637     $            CALL STGEXC( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ,
638     $                         Z, LDZ, KK, KS, WORK, LWORK, IERR )
639*
640               IF( IERR.GT.0 ) THEN
641*
642*                 Swap is rejected: exit.
643*
644                  INFO = 1
645                  IF( WANTP ) THEN
646                     PL = ZERO
647                     PR = ZERO
648                  END IF
649                  IF( WANTD ) THEN
650                     DIF( 1 ) = ZERO
651                     DIF( 2 ) = ZERO
652                  END IF
653                  GO TO 60
654               END IF
655*
656               IF( PAIR )
657     $            KS = KS + 1
658            END IF
659         END IF
660   30 CONTINUE
661      IF( WANTP ) THEN
662*
663*        Solve generalized Sylvester equation for R and L
664*        and compute PL and PR.
665*
666         N1 = M
667         N2 = N - M
668         I = N1 + 1
669         IJB = 0
670         CALL SLACPY( 'Full', N1, N2, A( 1, I ), LDA, WORK, N1 )
671         CALL SLACPY( 'Full', N1, N2, B( 1, I ), LDB, WORK( N1*N2+1 ),
672     $                N1 )
673         CALL STGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
674     $                N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ), N1,
675     $                DSCALE, DIF( 1 ), WORK( N1*N2*2+1 ),
676     $                LWORK-2*N1*N2, IWORK, IERR )
677*
678*        Estimate the reciprocal of norms of "projections" onto left
679*        and right eigenspaces.
680*
681         RDSCAL = ZERO
682         DSUM = ONE
683         CALL SLASSQ( N1*N2, WORK, 1, RDSCAL, DSUM )
684         PL = RDSCAL*SQRT( DSUM )
685         IF( PL.EQ.ZERO ) THEN
686            PL = ONE
687         ELSE
688            PL = DSCALE / ( SQRT( DSCALE*DSCALE / PL+PL )*SQRT( PL ) )
689         END IF
690         RDSCAL = ZERO
691         DSUM = ONE
692         CALL SLASSQ( N1*N2, WORK( N1*N2+1 ), 1, RDSCAL, DSUM )
693         PR = RDSCAL*SQRT( DSUM )
694         IF( PR.EQ.ZERO ) THEN
695            PR = ONE
696         ELSE
697            PR = DSCALE / ( SQRT( DSCALE*DSCALE / PR+PR )*SQRT( PR ) )
698         END IF
699      END IF
700*
701      IF( WANTD ) THEN
702*
703*        Compute estimates of Difu and Difl.
704*
705         IF( WANTD1 ) THEN
706            N1 = M
707            N2 = N - M
708            I = N1 + 1
709            IJB = IDIFJB
710*
711*           Frobenius norm-based Difu-estimate.
712*
713            CALL STGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA, WORK,
714     $                   N1, B, LDB, B( I, I ), LDB, WORK( N1*N2+1 ),
715     $                   N1, DSCALE, DIF( 1 ), WORK( 2*N1*N2+1 ),
716     $                   LWORK-2*N1*N2, IWORK, IERR )
717*
718*           Frobenius norm-based Difl-estimate.
719*
720            CALL STGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA, WORK,
721     $                   N2, B( I, I ), LDB, B, LDB, WORK( N1*N2+1 ),
722     $                   N2, DSCALE, DIF( 2 ), WORK( 2*N1*N2+1 ),
723     $                   LWORK-2*N1*N2, IWORK, IERR )
724         ELSE
725*
726*
727*           Compute 1-norm-based estimates of Difu and Difl using
728*           reversed communication with SLACN2. In each step a
729*           generalized Sylvester equation or a transposed variant
730*           is solved.
731*
732            KASE = 0
733            N1 = M
734            N2 = N - M
735            I = N1 + 1
736            IJB = 0
737            MN2 = 2*N1*N2
738*
739*           1-norm-based estimate of Difu.
740*
741   40       CONTINUE
742            CALL SLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 1 ),
743     $                   KASE, ISAVE )
744            IF( KASE.NE.0 ) THEN
745               IF( KASE.EQ.1 ) THEN
746*
747*                 Solve generalized Sylvester equation.
748*
749                  CALL STGSYL( 'N', IJB, N1, N2, A, LDA, A( I, I ), LDA,
750     $                         WORK, N1, B, LDB, B( I, I ), LDB,
751     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
752     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
753     $                         IERR )
754               ELSE
755*
756*                 Solve the transposed variant.
757*
758                  CALL STGSYL( 'T', IJB, N1, N2, A, LDA, A( I, I ), LDA,
759     $                         WORK, N1, B, LDB, B( I, I ), LDB,
760     $                         WORK( N1*N2+1 ), N1, DSCALE, DIF( 1 ),
761     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
762     $                         IERR )
763               END IF
764               GO TO 40
765            END IF
766            DIF( 1 ) = DSCALE / DIF( 1 )
767*
768*           1-norm-based estimate of Difl.
769*
770   50       CONTINUE
771            CALL SLACN2( MN2, WORK( MN2+1 ), WORK, IWORK, DIF( 2 ),
772     $                   KASE, ISAVE )
773            IF( KASE.NE.0 ) THEN
774               IF( KASE.EQ.1 ) THEN
775*
776*                 Solve generalized Sylvester equation.
777*
778                  CALL STGSYL( 'N', IJB, N2, N1, A( I, I ), LDA, A, LDA,
779     $                         WORK, N2, B( I, I ), LDB, B, LDB,
780     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
781     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
782     $                         IERR )
783               ELSE
784*
785*                 Solve the transposed variant.
786*
787                  CALL STGSYL( 'T', IJB, N2, N1, A( I, I ), LDA, A, LDA,
788     $                         WORK, N2, B( I, I ), LDB, B, LDB,
789     $                         WORK( N1*N2+1 ), N2, DSCALE, DIF( 2 ),
790     $                         WORK( 2*N1*N2+1 ), LWORK-2*N1*N2, IWORK,
791     $                         IERR )
792               END IF
793               GO TO 50
794            END IF
795            DIF( 2 ) = DSCALE / DIF( 2 )
796*
797         END IF
798      END IF
799*
800   60 CONTINUE
801*
802*     Compute generalized eigenvalues of reordered pair (A, B) and
803*     normalize the generalized Schur form.
804*
805      PAIR = .FALSE.
806      DO 70 K = 1, N
807         IF( PAIR ) THEN
808            PAIR = .FALSE.
809         ELSE
810*
811            IF( K.LT.N ) THEN
812               IF( A( K+1, K ).NE.ZERO ) THEN
813                  PAIR = .TRUE.
814               END IF
815            END IF
816*
817            IF( PAIR ) THEN
818*
819*             Compute the eigenvalue(s) at position K.
820*
821               WORK( 1 ) = A( K, K )
822               WORK( 2 ) = A( K+1, K )
823               WORK( 3 ) = A( K, K+1 )
824               WORK( 4 ) = A( K+1, K+1 )
825               WORK( 5 ) = B( K, K )
826               WORK( 6 ) = B( K+1, K )
827               WORK( 7 ) = B( K, K+1 )
828               WORK( 8 ) = B( K+1, K+1 )
829               CALL SLAG2( WORK, 2, WORK( 5 ), 2, SMLNUM*EPS, BETA( K ),
830     $                     BETA( K+1 ), ALPHAR( K ), ALPHAR( K+1 ),
831     $                     ALPHAI( K ) )
832               ALPHAI( K+1 ) = -ALPHAI( K )
833*
834            ELSE
835*
836               IF( SIGN( ONE, B( K, K ) ).LT.ZERO ) THEN
837*
838*                 If B(K,K) is negative, make it positive
839*
840                  DO 80 I = 1, N
841                     A( K, I ) = -A( K, I )
842                     B( K, I ) = -B( K, I )
843                     IF( WANTQ ) Q( I, K ) = -Q( I, K )
844   80             CONTINUE
845               END IF
846*
847               ALPHAR( K ) = A( K, K )
848               ALPHAI( K ) = ZERO
849               BETA( K ) = B( K, K )
850*
851            END IF
852         END IF
853   70 CONTINUE
854*
855      WORK( 1 ) = LWMIN
856      IWORK( 1 ) = LIWMIN
857*
858      RETURN
859*
860*     End of STGSEN
861*
862      END
863