1*> \brief \b ZGSVJ1 pre-processor for the routine zgesvj, applies Jacobi rotations targeting only particular pivots.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGSVJ1 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgsvj1.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgsvj1.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgsvj1.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
22*                          EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       DOUBLE PRECISION   EPS, SFMIN, TOL
26*       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
27*       CHARACTER*1        JOBV
28*       ..
29*       .. Array Arguments ..
30*       COMPLEX*16         A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
31*       DOUBLE PRECISION   SVA( N )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*> ZGSVJ1 is called from ZGESVJ as a pre-processor and that is its main
41*> purpose. It applies Jacobi rotations in the same way as ZGESVJ does, but
42*> it targets only particular pivots and it does not check convergence
43*> (stopping criterion). Few tuning parameters (marked by [TP]) are
44*> available for the implementer.
45*>
46*> Further Details
47*> ~~~~~~~~~~~~~~~
48*> ZGSVJ1 applies few sweeps of Jacobi rotations in the column space of
49*> the input M-by-N matrix A. The pivot pairs are taken from the (1,2)
50*> off-diagonal block in the corresponding N-by-N Gram matrix A^T * A. The
51*> block-entries (tiles) of the (1,2) off-diagonal block are marked by the
52*> [x]'s in the following scheme:
53*>
54*>    | *  *  * [x] [x] [x]|
55*>    | *  *  * [x] [x] [x]|    Row-cycling in the nblr-by-nblc [x] blocks.
56*>    | *  *  * [x] [x] [x]|    Row-cyclic pivoting inside each [x] block.
57*>    |[x] [x] [x] *  *  * |
58*>    |[x] [x] [x] *  *  * |
59*>    |[x] [x] [x] *  *  * |
60*>
61*> In terms of the columns of A, the first N1 columns are rotated 'against'
62*> the remaining N-N1 columns, trying to increase the angle between the
63*> corresponding subspaces. The off-diagonal block is N1-by(N-N1) and it is
64*> tiled using quadratic tiles of side KBL. Here, KBL is a tuning parameter.
65*> The number of sweeps is given in NSWEEP and the orthogonality threshold
66*> is given in TOL.
67*> \endverbatim
68*
69*  Arguments:
70*  ==========
71*
72*> \param[in] JOBV
73*> \verbatim
74*>          JOBV is CHARACTER*1
75*>          Specifies whether the output from this procedure is used
76*>          to compute the matrix V:
77*>          = 'V': the product of the Jacobi rotations is accumulated
78*>                 by postmulyiplying the N-by-N array V.
79*>                (See the description of V.)
80*>          = 'A': the product of the Jacobi rotations is accumulated
81*>                 by postmulyiplying the MV-by-N array V.
82*>                (See the descriptions of MV and V.)
83*>          = 'N': the Jacobi rotations are not accumulated.
84*> \endverbatim
85*>
86*> \param[in] M
87*> \verbatim
88*>          M is INTEGER
89*>          The number of rows of the input matrix A.  M >= 0.
90*> \endverbatim
91*>
92*> \param[in] N
93*> \verbatim
94*>          N is INTEGER
95*>          The number of columns of the input matrix A.
96*>          M >= N >= 0.
97*> \endverbatim
98*>
99*> \param[in] N1
100*> \verbatim
101*>          N1 is INTEGER
102*>          N1 specifies the 2 x 2 block partition, the first N1 columns are
103*>          rotated 'against' the remaining N-N1 columns of A.
104*> \endverbatim
105*>
106*> \param[in,out] A
107*> \verbatim
108*>          A is COMPLEX*16 array, dimension (LDA,N)
109*>          On entry, M-by-N matrix A, such that A*diag(D) represents
110*>          the input matrix.
111*>          On exit,
112*>          A_onexit * D_onexit represents the input matrix A*diag(D)
113*>          post-multiplied by a sequence of Jacobi rotations, where the
114*>          rotation threshold and the total number of sweeps are given in
115*>          TOL and NSWEEP, respectively.
116*>          (See the descriptions of N1, D, TOL and NSWEEP.)
117*> \endverbatim
118*>
119*> \param[in] LDA
120*> \verbatim
121*>          LDA is INTEGER
122*>          The leading dimension of the array A.  LDA >= max(1,M).
123*> \endverbatim
124*>
125*> \param[in,out] D
126*> \verbatim
127*>          D is COMPLEX*16 array, dimension (N)
128*>          The array D accumulates the scaling factors from the fast scaled
129*>          Jacobi rotations.
130*>          On entry, A*diag(D) represents the input matrix.
131*>          On exit, A_onexit*diag(D_onexit) represents the input matrix
132*>          post-multiplied by a sequence of Jacobi rotations, where the
133*>          rotation threshold and the total number of sweeps are given in
134*>          TOL and NSWEEP, respectively.
135*>          (See the descriptions of N1, A, TOL and NSWEEP.)
136*> \endverbatim
137*>
138*> \param[in,out] SVA
139*> \verbatim
140*>          SVA is DOUBLE PRECISION array, dimension (N)
141*>          On entry, SVA contains the Euclidean norms of the columns of
142*>          the matrix A*diag(D).
143*>          On exit, SVA contains the Euclidean norms of the columns of
144*>          the matrix onexit*diag(D_onexit).
145*> \endverbatim
146*>
147*> \param[in] MV
148*> \verbatim
149*>          MV is INTEGER
150*>          If JOBV = 'A', then MV rows of V are post-multipled by a
151*>                           sequence of Jacobi rotations.
152*>          If JOBV = 'N',   then MV is not referenced.
153*> \endverbatim
154*>
155*> \param[in,out] V
156*> \verbatim
157*>          V is COMPLEX*16 array, dimension (LDV,N)
158*>          If JOBV = 'V' then N rows of V are post-multipled by a
159*>                           sequence of Jacobi rotations.
160*>          If JOBV = 'A' then MV rows of V are post-multipled by a
161*>                           sequence of Jacobi rotations.
162*>          If JOBV = 'N',   then V is not referenced.
163*> \endverbatim
164*>
165*> \param[in] LDV
166*> \verbatim
167*>          LDV is INTEGER
168*>          The leading dimension of the array V,  LDV >= 1.
169*>          If JOBV = 'V', LDV >= N.
170*>          If JOBV = 'A', LDV >= MV.
171*> \endverbatim
172*>
173*> \param[in] EPS
174*> \verbatim
175*>          EPS is DOUBLE PRECISION
176*>          EPS = DLAMCH('Epsilon')
177*> \endverbatim
178*>
179*> \param[in] SFMIN
180*> \verbatim
181*>          SFMIN is DOUBLE PRECISION
182*>          SFMIN = DLAMCH('Safe Minimum')
183*> \endverbatim
184*>
185*> \param[in] TOL
186*> \verbatim
187*>          TOL is DOUBLE PRECISION
188*>          TOL is the threshold for Jacobi rotations. For a pair
189*>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
190*>          applied only if ABS(COS(angle(A(:,p),A(:,q)))) > TOL.
191*> \endverbatim
192*>
193*> \param[in] NSWEEP
194*> \verbatim
195*>          NSWEEP is INTEGER
196*>          NSWEEP is the number of sweeps of Jacobi rotations to be
197*>          performed.
198*> \endverbatim
199*>
200*> \param[out] WORK
201*> \verbatim
202*>          WORK is COMPLEX*16 array, dimension (LWORK)
203*> \endverbatim
204*>
205*> \param[in] LWORK
206*> \verbatim
207*>          LWORK is INTEGER
208*>          LWORK is the dimension of WORK. LWORK >= M.
209*> \endverbatim
210*>
211*> \param[out] INFO
212*> \verbatim
213*>          INFO is INTEGER
214*>          = 0:  successful exit.
215*>          < 0:  if INFO = -i, then the i-th argument had an illegal value
216*> \endverbatim
217*
218*  Authors:
219*  ========
220*
221*> \author Univ. of Tennessee
222*> \author Univ. of California Berkeley
223*> \author Univ. of Colorado Denver
224*> \author NAG Ltd.
225*
226*> \ingroup complex16OTHERcomputational
227*
228*> \par Contributor:
229*  ==================
230*>
231*> Zlatko Drmac (Zagreb, Croatia)
232*
233*  =====================================================================
234      SUBROUTINE ZGSVJ1( JOBV, M, N, N1, A, LDA, D, SVA, MV, V, LDV,
235     $                   EPS, SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
236*
237*  -- LAPACK computational routine --
238*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
239*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
240*
241      IMPLICIT NONE
242*     .. Scalar Arguments ..
243      DOUBLE PRECISION   EPS, SFMIN, TOL
244      INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, N1, NSWEEP
245      CHARACTER*1        JOBV
246*     ..
247*     .. Array Arguments ..
248      COMPLEX*16         A( LDA, * ), D( N ), V( LDV, * ), WORK( LWORK )
249      DOUBLE PRECISION   SVA( N )
250*     ..
251*
252*  =====================================================================
253*
254*     .. Local Parameters ..
255      DOUBLE PRECISION   ZERO, HALF, ONE
256      PARAMETER          ( ZERO = 0.0D0, HALF = 0.5D0, ONE = 1.0D0)
257*     ..
258*     .. Local Scalars ..
259      COMPLEX*16         AAPQ, OMPQ
260      DOUBLE PRECISION   AAPP, AAPP0, AAPQ1, AAQQ, APOAQ, AQOAP, BIG,
261     $                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG,
262     $                   ROOTEPS, ROOTSFMIN, ROOTTOL, SMALL, SN, T,
263     $                   TEMP1, THETA, THSIGN
264      INTEGER            BLSKIP, EMPTSW, i, ibr, igl, IERR, IJBLSK,
265     $                   ISWROT, jbc, jgl, KBL, MVL, NOTROT, nblc, nblr,
266     $                   p, PSKIPPED, q, ROWSKIP, SWBAND
267      LOGICAL            APPLV, ROTOK, RSVEC
268*     ..
269*     ..
270*     .. Intrinsic Functions ..
271      INTRINSIC          ABS, CONJG, MAX, DBLE, MIN, SIGN, SQRT
272*     ..
273*     .. External Functions ..
274      DOUBLE PRECISION   DZNRM2
275      COMPLEX*16         ZDOTC
276      INTEGER            IDAMAX
277      LOGICAL            LSAME
278      EXTERNAL           IDAMAX, LSAME, ZDOTC, DZNRM2
279*     ..
280*     .. External Subroutines ..
281*     .. from BLAS
282      EXTERNAL           ZCOPY, ZROT, ZSWAP, ZAXPY
283*     .. from LAPACK
284      EXTERNAL           ZLASCL, ZLASSQ, XERBLA
285*     ..
286*     .. Executable Statements ..
287*
288*     Test the input parameters.
289*
290      APPLV = LSAME( JOBV, 'A' )
291      RSVEC = LSAME( JOBV, 'V' )
292      IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
293         INFO = -1
294      ELSE IF( M.LT.0 ) THEN
295         INFO = -2
296      ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
297         INFO = -3
298      ELSE IF( N1.LT.0 ) THEN
299         INFO = -4
300      ELSE IF( LDA.LT.M ) THEN
301         INFO = -6
302      ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
303         INFO = -9
304      ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR.
305     $         ( APPLV.AND.( LDV.LT.MV ) )  ) THEN
306         INFO = -11
307      ELSE IF( TOL.LE.EPS ) THEN
308         INFO = -14
309      ELSE IF( NSWEEP.LT.0 ) THEN
310         INFO = -15
311      ELSE IF( LWORK.LT.M ) THEN
312         INFO = -17
313      ELSE
314         INFO = 0
315      END IF
316*
317*     #:(
318      IF( INFO.NE.0 ) THEN
319         CALL XERBLA( 'ZGSVJ1', -INFO )
320         RETURN
321      END IF
322*
323      IF( RSVEC ) THEN
324         MVL = N
325      ELSE IF( APPLV ) THEN
326         MVL = MV
327      END IF
328      RSVEC = RSVEC .OR. APPLV
329
330      ROOTEPS = SQRT( EPS )
331      ROOTSFMIN = SQRT( SFMIN )
332      SMALL = SFMIN / EPS
333      BIG = ONE / SFMIN
334      ROOTBIG = ONE / ROOTSFMIN
335*     LARGE = BIG / SQRT( DBLE( M*N ) )
336      BIGTHETA = ONE / ROOTEPS
337      ROOTTOL = SQRT( TOL )
338*
339*     .. Initialize the right singular vector matrix ..
340*
341*     RSVEC = LSAME( JOBV, 'Y' )
342*
343      EMPTSW = N1*( N-N1 )
344      NOTROT = 0
345*
346*     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
347*
348      KBL = MIN( 8, N )
349      NBLR = N1 / KBL
350      IF( ( NBLR*KBL ).NE.N1 )NBLR = NBLR + 1
351
352*     .. the tiling is nblr-by-nblc [tiles]
353
354      NBLC = ( N-N1 ) / KBL
355      IF( ( NBLC*KBL ).NE.( N-N1 ) )NBLC = NBLC + 1
356      BLSKIP = ( KBL**2 ) + 1
357*[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
358
359      ROWSKIP = MIN( 5, KBL )
360*[TP] ROWSKIP is a tuning parameter.
361      SWBAND = 0
362*[TP] SWBAND is a tuning parameter. It is meaningful and effective
363*     if ZGESVJ is used as a computational routine in the preconditioned
364*     Jacobi SVD algorithm ZGEJSV.
365*
366*
367*     | *   *   * [x] [x] [x]|
368*     | *   *   * [x] [x] [x]|    Row-cycling in the nblr-by-nblc [x] blocks.
369*     | *   *   * [x] [x] [x]|    Row-cyclic pivoting inside each [x] block.
370*     |[x] [x] [x] *   *   * |
371*     |[x] [x] [x] *   *   * |
372*     |[x] [x] [x] *   *   * |
373*
374*
375      DO 1993 i = 1, NSWEEP
376*
377*     .. go go go ...
378*
379         MXAAPQ = ZERO
380         MXSINJ = ZERO
381         ISWROT = 0
382*
383         NOTROT = 0
384         PSKIPPED = 0
385*
386*     Each sweep is unrolled using KBL-by-KBL tiles over the pivot pairs
387*     1 <= p < q <= N. This is the first step toward a blocked implementation
388*     of the rotations. New implementation, based on block transformations,
389*     is under development.
390*
391         DO 2000 ibr = 1, NBLR
392*
393            igl = ( ibr-1 )*KBL + 1
394*
395
396*
397* ... go to the off diagonal blocks
398*
399            igl = ( ibr-1 )*KBL + 1
400*
401*            DO 2010 jbc = ibr + 1, NBL
402            DO 2010 jbc = 1, NBLC
403*
404               jgl = ( jbc-1 )*KBL + N1 + 1
405*
406*        doing the block at ( ibr, jbc )
407*
408               IJBLSK = 0
409               DO 2100 p = igl, MIN( igl+KBL-1, N1 )
410*
411                  AAPP = SVA( p )
412                  IF( AAPP.GT.ZERO ) THEN
413*
414                     PSKIPPED = 0
415*
416                     DO 2200 q = jgl, MIN( jgl+KBL-1, N )
417*
418                        AAQQ = SVA( q )
419                        IF( AAQQ.GT.ZERO ) THEN
420                           AAPP0 = AAPP
421*
422*     .. M x 2 Jacobi SVD ..
423*
424*        Safe Gram matrix computation
425*
426                           IF( AAQQ.GE.ONE ) THEN
427                              IF( AAPP.GE.AAQQ ) THEN
428                                 ROTOK = ( SMALL*AAPP ).LE.AAQQ
429                              ELSE
430                                 ROTOK = ( SMALL*AAQQ ).LE.AAPP
431                              END IF
432                              IF( AAPP.LT.( BIG / AAQQ ) ) THEN
433                                 AAPQ = ( ZDOTC( M, A( 1, p ), 1,
434     $                                  A( 1, q ), 1 ) / AAQQ ) / AAPP
435                              ELSE
436                                 CALL ZCOPY( M, A( 1, p ), 1,
437     $                                       WORK, 1 )
438                                 CALL ZLASCL( 'G', 0, 0, AAPP,
439     $                                        ONE, M, 1,
440     $                                        WORK, LDA, IERR )
441                                 AAPQ = ZDOTC( M, WORK, 1,
442     $                                  A( 1, q ), 1 ) / AAQQ
443                              END IF
444                           ELSE
445                              IF( AAPP.GE.AAQQ ) THEN
446                                 ROTOK = AAPP.LE.( AAQQ / SMALL )
447                              ELSE
448                                 ROTOK = AAQQ.LE.( AAPP / SMALL )
449                              END IF
450                              IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
451                                 AAPQ = ( ZDOTC( M, A( 1, p ), 1,
452     $                                 A( 1, q ), 1 ) / MAX(AAQQ,AAPP) )
453     $                                               / MIN(AAQQ,AAPP)
454                              ELSE
455                                 CALL ZCOPY( M, A( 1, q ), 1,
456     $                                       WORK, 1 )
457                                 CALL ZLASCL( 'G', 0, 0, AAQQ,
458     $                                        ONE, M, 1,
459     $                                        WORK, LDA, IERR )
460                                 AAPQ = ZDOTC( M, A( 1, p ), 1,
461     $                                  WORK, 1 ) / AAPP
462                              END IF
463                           END IF
464*
465*                           AAPQ = AAPQ * CONJG(CWORK(p))*CWORK(q)
466                           AAPQ1  = -ABS(AAPQ)
467                           MXAAPQ = MAX( MXAAPQ, -AAPQ1 )
468*
469*        TO rotate or NOT to rotate, THAT is the question ...
470*
471                           IF( ABS( AAPQ1 ).GT.TOL ) THEN
472                              OMPQ = AAPQ / ABS(AAPQ)
473                              NOTROT = 0
474*[RTD]      ROTATED  = ROTATED + 1
475                              PSKIPPED = 0
476                              ISWROT = ISWROT + 1
477*
478                              IF( ROTOK ) THEN
479*
480                                 AQOAP = AAQQ / AAPP
481                                 APOAQ = AAPP / AAQQ
482                                 THETA = -HALF*ABS( AQOAP-APOAQ )/ AAPQ1
483                                 IF( AAQQ.GT.AAPP0 )THETA = -THETA
484*
485                                 IF( ABS( THETA ).GT.BIGTHETA ) THEN
486                                    T  = HALF / THETA
487                                    CS = ONE
488                                    CALL ZROT( M, A(1,p), 1, A(1,q), 1,
489     $                                          CS, CONJG(OMPQ)*T )
490                                    IF( RSVEC ) THEN
491                                        CALL ZROT( MVL, V(1,p), 1,
492     $                                  V(1,q), 1, CS, CONJG(OMPQ)*T )
493                                    END IF
494                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
495     $                                         ONE+T*APOAQ*AAPQ1 ) )
496                                    AAPP = AAPP*SQRT( MAX( ZERO,
497     $                                     ONE-T*AQOAP*AAPQ1 ) )
498                                    MXSINJ = MAX( MXSINJ, ABS( T ) )
499                                 ELSE
500*
501*                 .. choose correct signum for THETA and rotate
502*
503                                    THSIGN = -SIGN( ONE, AAPQ1 )
504                                    IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
505                                    T = ONE / ( THETA+THSIGN*
506     $                                  SQRT( ONE+THETA*THETA ) )
507                                    CS = SQRT( ONE / ( ONE+T*T ) )
508                                    SN = T*CS
509                                    MXSINJ = MAX( MXSINJ, ABS( SN ) )
510                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
511     $                                         ONE+T*APOAQ*AAPQ1 ) )
512                                    AAPP = AAPP*SQRT( MAX( ZERO,
513     $                                         ONE-T*AQOAP*AAPQ1 ) )
514*
515                                    CALL ZROT( M, A(1,p), 1, A(1,q), 1,
516     $                                          CS, CONJG(OMPQ)*SN )
517                                    IF( RSVEC ) THEN
518                                        CALL ZROT( MVL, V(1,p), 1,
519     $                                  V(1,q), 1, CS, CONJG(OMPQ)*SN )
520                                    END IF
521                                 END IF
522                                 D(p) = -D(q) * OMPQ
523*
524                              ELSE
525*              .. have to use modified Gram-Schmidt like transformation
526                               IF( AAPP.GT.AAQQ ) THEN
527                                    CALL ZCOPY( M, A( 1, p ), 1,
528     $                                          WORK, 1 )
529                                    CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
530     $                                           M, 1, WORK,LDA,
531     $                                           IERR )
532                                    CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
533     $                                           M, 1, A( 1, q ), LDA,
534     $                                           IERR )
535                                    CALL ZAXPY( M, -AAPQ, WORK,
536     $                                          1, A( 1, q ), 1 )
537                                    CALL ZLASCL( 'G', 0, 0, ONE, AAQQ,
538     $                                           M, 1, A( 1, q ), LDA,
539     $                                           IERR )
540                                    SVA( q ) = AAQQ*SQRT( MAX( ZERO,
541     $                                         ONE-AAPQ1*AAPQ1 ) )
542                                    MXSINJ = MAX( MXSINJ, SFMIN )
543                               ELSE
544                                   CALL ZCOPY( M, A( 1, q ), 1,
545     $                                          WORK, 1 )
546                                    CALL ZLASCL( 'G', 0, 0, AAQQ, ONE,
547     $                                           M, 1, WORK,LDA,
548     $                                           IERR )
549                                    CALL ZLASCL( 'G', 0, 0, AAPP, ONE,
550     $                                           M, 1, A( 1, p ), LDA,
551     $                                           IERR )
552                                    CALL ZAXPY( M, -CONJG(AAPQ),
553     $                                   WORK, 1, A( 1, p ), 1 )
554                                    CALL ZLASCL( 'G', 0, 0, ONE, AAPP,
555     $                                           M, 1, A( 1, p ), LDA,
556     $                                           IERR )
557                                    SVA( p ) = AAPP*SQRT( MAX( ZERO,
558     $                                         ONE-AAPQ1*AAPQ1 ) )
559                                    MXSINJ = MAX( MXSINJ, SFMIN )
560                               END IF
561                              END IF
562*           END IF ROTOK THEN ... ELSE
563*
564*           In the case of cancellation in updating SVA(q), SVA(p)
565*           .. recompute SVA(q), SVA(p)
566                              IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
567     $                            THEN
568                                 IF( ( AAQQ.LT.ROOTBIG ) .AND.
569     $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
570                                    SVA( q ) = DZNRM2( M, A( 1, q ), 1)
571                                  ELSE
572                                    T = ZERO
573                                    AAQQ = ONE
574                                    CALL ZLASSQ( M, A( 1, q ), 1, T,
575     $                                           AAQQ )
576                                    SVA( q ) = T*SQRT( AAQQ )
577                                 END IF
578                              END IF
579                              IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
580                                 IF( ( AAPP.LT.ROOTBIG ) .AND.
581     $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
582                                    AAPP = DZNRM2( M, A( 1, p ), 1 )
583                                 ELSE
584                                    T = ZERO
585                                    AAPP = ONE
586                                    CALL ZLASSQ( M, A( 1, p ), 1, T,
587     $                                           AAPP )
588                                    AAPP = T*SQRT( AAPP )
589                                 END IF
590                                 SVA( p ) = AAPP
591                              END IF
592*              end of OK rotation
593                           ELSE
594                              NOTROT = NOTROT + 1
595*[RTD]      SKIPPED  = SKIPPED  + 1
596                              PSKIPPED = PSKIPPED + 1
597                              IJBLSK = IJBLSK + 1
598                           END IF
599                        ELSE
600                           NOTROT = NOTROT + 1
601                           PSKIPPED = PSKIPPED + 1
602                           IJBLSK = IJBLSK + 1
603                        END IF
604*
605                        IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
606     $                      THEN
607                           SVA( p ) = AAPP
608                           NOTROT = 0
609                           GO TO 2011
610                        END IF
611                        IF( ( i.LE.SWBAND ) .AND.
612     $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
613                           AAPP = -AAPP
614                           NOTROT = 0
615                           GO TO 2203
616                        END IF
617*
618 2200                CONTINUE
619*        end of the q-loop
620 2203                CONTINUE
621*
622                     SVA( p ) = AAPP
623*
624                  ELSE
625*
626                     IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
627     $                   MIN( jgl+KBL-1, N ) - jgl + 1
628                     IF( AAPP.LT.ZERO )NOTROT = 0
629*
630                  END IF
631*
632 2100          CONTINUE
633*     end of the p-loop
634 2010       CONTINUE
635*     end of the jbc-loop
636 2011       CONTINUE
637*2011 bailed out of the jbc-loop
638            DO 2012 p = igl, MIN( igl+KBL-1, N )
639               SVA( p ) = ABS( SVA( p ) )
640 2012       CONTINUE
641***
642 2000    CONTINUE
643*2000 :: end of the ibr-loop
644*
645*     .. update SVA(N)
646         IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
647     $       THEN
648            SVA( N ) = DZNRM2( M, A( 1, N ), 1 )
649         ELSE
650            T = ZERO
651            AAPP = ONE
652            CALL ZLASSQ( M, A( 1, N ), 1, T, AAPP )
653            SVA( N ) = T*SQRT( AAPP )
654         END IF
655*
656*     Additional steering devices
657*
658         IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
659     $       ( ISWROT.LE.N ) ) )SWBAND = i
660*
661         IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.SQRT( DBLE( N ) )*
662     $       TOL ) .AND. ( DBLE( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
663            GO TO 1994
664         END IF
665*
666         IF( NOTROT.GE.EMPTSW )GO TO 1994
667*
668 1993 CONTINUE
669*     end i=1:NSWEEP loop
670*
671* #:( Reaching this point means that the procedure has not converged.
672      INFO = NSWEEP - 1
673      GO TO 1995
674*
675 1994 CONTINUE
676* #:) Reaching this point means numerical convergence after the i-th
677*     sweep.
678*
679      INFO = 0
680* #:) INFO = 0 confirms successful iterations.
681 1995 CONTINUE
682*
683*     Sort the vector SVA() of column norms.
684      DO 5991 p = 1, N - 1
685         q = IDAMAX( N-p+1, SVA( p ), 1 ) + p - 1
686         IF( p.NE.q ) THEN
687            TEMP1 = SVA( p )
688            SVA( p ) = SVA( q )
689            SVA( q ) = TEMP1
690            AAPQ = D( p )
691            D( p ) = D( q )
692            D( q ) = AAPQ
693            CALL ZSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
694            IF( RSVEC )CALL ZSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
695         END IF
696 5991 CONTINUE
697*
698*
699      RETURN
700*     ..
701*     .. END OF ZGSVJ1
702*     ..
703      END
704