1*> \brief \b ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZLANHE + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhe.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhe.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhe.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK ) 22* 23* .. Scalar Arguments .. 24* CHARACTER NORM, UPLO 25* INTEGER LDA, N 26* .. 27* .. Array Arguments .. 28* DOUBLE PRECISION WORK( * ) 29* COMPLEX*16 A( LDA, * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> ZLANHE returns the value of the one norm, or the Frobenius norm, or 39*> the infinity norm, or the element of largest absolute value of a 40*> complex hermitian matrix A. 41*> \endverbatim 42*> 43*> \return ZLANHE 44*> \verbatim 45*> 46*> ZLANHE = ( max(abs(A(i,j))), NORM = 'M' or 'm' 47*> ( 48*> ( norm1(A), NORM = '1', 'O' or 'o' 49*> ( 50*> ( normI(A), NORM = 'I' or 'i' 51*> ( 52*> ( normF(A), NORM = 'F', 'f', 'E' or 'e' 53*> 54*> where norm1 denotes the one norm of a matrix (maximum column sum), 55*> normI denotes the infinity norm of a matrix (maximum row sum) and 56*> normF denotes the Frobenius norm of a matrix (square root of sum of 57*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. 58*> \endverbatim 59* 60* Arguments: 61* ========== 62* 63*> \param[in] NORM 64*> \verbatim 65*> NORM is CHARACTER*1 66*> Specifies the value to be returned in ZLANHE as described 67*> above. 68*> \endverbatim 69*> 70*> \param[in] UPLO 71*> \verbatim 72*> UPLO is CHARACTER*1 73*> Specifies whether the upper or lower triangular part of the 74*> hermitian matrix A is to be referenced. 75*> = 'U': Upper triangular part of A is referenced 76*> = 'L': Lower triangular part of A is referenced 77*> \endverbatim 78*> 79*> \param[in] N 80*> \verbatim 81*> N is INTEGER 82*> The order of the matrix A. N >= 0. When N = 0, ZLANHE is 83*> set to zero. 84*> \endverbatim 85*> 86*> \param[in] A 87*> \verbatim 88*> A is COMPLEX*16 array, dimension (LDA,N) 89*> The hermitian matrix A. If UPLO = 'U', the leading n by n 90*> upper triangular part of A contains the upper triangular part 91*> of the matrix A, and the strictly lower triangular part of A 92*> is not referenced. If UPLO = 'L', the leading n by n lower 93*> triangular part of A contains the lower triangular part of 94*> the matrix A, and the strictly upper triangular part of A is 95*> not referenced. Note that the imaginary parts of the diagonal 96*> elements need not be set and are assumed to be zero. 97*> \endverbatim 98*> 99*> \param[in] LDA 100*> \verbatim 101*> LDA is INTEGER 102*> The leading dimension of the array A. LDA >= max(N,1). 103*> \endverbatim 104*> 105*> \param[out] WORK 106*> \verbatim 107*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)), 108*> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, 109*> WORK is not referenced. 110*> \endverbatim 111* 112* Authors: 113* ======== 114* 115*> \author Univ. of Tennessee 116*> \author Univ. of California Berkeley 117*> \author Univ. of Colorado Denver 118*> \author NAG Ltd. 119* 120*> \ingroup complex16HEauxiliary 121* 122* ===================================================================== 123 DOUBLE PRECISION FUNCTION ZLANHE( NORM, UPLO, N, A, LDA, WORK ) 124* 125* -- LAPACK auxiliary routine -- 126* -- LAPACK is a software package provided by Univ. of Tennessee, -- 127* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 128* 129 IMPLICIT NONE 130* .. Scalar Arguments .. 131 CHARACTER NORM, UPLO 132 INTEGER LDA, N 133* .. 134* .. Array Arguments .. 135 DOUBLE PRECISION WORK( * ) 136 COMPLEX*16 A( LDA, * ) 137* .. 138* 139* ===================================================================== 140* 141* .. Parameters .. 142 DOUBLE PRECISION ONE, ZERO 143 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 144* .. 145* .. Local Scalars .. 146 INTEGER I, J 147 DOUBLE PRECISION ABSA, SUM, VALUE 148* .. 149* .. Local Arrays .. 150 DOUBLE PRECISION SSQ( 2 ), COLSSQ( 2 ) 151* .. 152* .. External Functions .. 153 LOGICAL LSAME, DISNAN 154 EXTERNAL LSAME, DISNAN 155* .. 156* .. External Subroutines .. 157 EXTERNAL ZLASSQ, DCOMBSSQ 158* .. 159* .. Intrinsic Functions .. 160 INTRINSIC ABS, DBLE, SQRT 161* .. 162* .. Executable Statements .. 163* 164 IF( N.EQ.0 ) THEN 165 VALUE = ZERO 166 ELSE IF( LSAME( NORM, 'M' ) ) THEN 167* 168* Find max(abs(A(i,j))). 169* 170 VALUE = ZERO 171 IF( LSAME( UPLO, 'U' ) ) THEN 172 DO 20 J = 1, N 173 DO 10 I = 1, J - 1 174 SUM = ABS( A( I, J ) ) 175 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 176 10 CONTINUE 177 SUM = ABS( DBLE( A( J, J ) ) ) 178 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 179 20 CONTINUE 180 ELSE 181 DO 40 J = 1, N 182 SUM = ABS( DBLE( A( J, J ) ) ) 183 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 184 DO 30 I = J + 1, N 185 SUM = ABS( A( I, J ) ) 186 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 187 30 CONTINUE 188 40 CONTINUE 189 END IF 190 ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR. 191 $ ( NORM.EQ.'1' ) ) THEN 192* 193* Find normI(A) ( = norm1(A), since A is hermitian). 194* 195 VALUE = ZERO 196 IF( LSAME( UPLO, 'U' ) ) THEN 197 DO 60 J = 1, N 198 SUM = ZERO 199 DO 50 I = 1, J - 1 200 ABSA = ABS( A( I, J ) ) 201 SUM = SUM + ABSA 202 WORK( I ) = WORK( I ) + ABSA 203 50 CONTINUE 204 WORK( J ) = SUM + ABS( DBLE( A( J, J ) ) ) 205 60 CONTINUE 206 DO 70 I = 1, N 207 SUM = WORK( I ) 208 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 209 70 CONTINUE 210 ELSE 211 DO 80 I = 1, N 212 WORK( I ) = ZERO 213 80 CONTINUE 214 DO 100 J = 1, N 215 SUM = WORK( J ) + ABS( DBLE( A( J, J ) ) ) 216 DO 90 I = J + 1, N 217 ABSA = ABS( A( I, J ) ) 218 SUM = SUM + ABSA 219 WORK( I ) = WORK( I ) + ABSA 220 90 CONTINUE 221 IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM 222 100 CONTINUE 223 END IF 224 ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN 225* 226* Find normF(A). 227* SSQ(1) is scale 228* SSQ(2) is sum-of-squares 229* For better accuracy, sum each column separately. 230* 231 SSQ( 1 ) = ZERO 232 SSQ( 2 ) = ONE 233* 234* Sum off-diagonals 235* 236 IF( LSAME( UPLO, 'U' ) ) THEN 237 DO 110 J = 2, N 238 COLSSQ( 1 ) = ZERO 239 COLSSQ( 2 ) = ONE 240 CALL ZLASSQ( J-1, A( 1, J ), 1, 241 $ COLSSQ( 1 ), COLSSQ( 2 ) ) 242 CALL DCOMBSSQ( SSQ, COLSSQ ) 243 110 CONTINUE 244 ELSE 245 DO 120 J = 1, N - 1 246 COLSSQ( 1 ) = ZERO 247 COLSSQ( 2 ) = ONE 248 CALL ZLASSQ( N-J, A( J+1, J ), 1, 249 $ COLSSQ( 1 ), COLSSQ( 2 ) ) 250 CALL DCOMBSSQ( SSQ, COLSSQ ) 251 120 CONTINUE 252 END IF 253 SSQ( 2 ) = 2*SSQ( 2 ) 254* 255* Sum diagonal 256* 257 DO 130 I = 1, N 258 IF( DBLE( A( I, I ) ).NE.ZERO ) THEN 259 ABSA = ABS( DBLE( A( I, I ) ) ) 260 IF( SSQ( 1 ).LT.ABSA ) THEN 261 SSQ( 2 ) = ONE + SSQ( 2 )*( SSQ( 1 ) / ABSA )**2 262 SSQ( 1 ) = ABSA 263 ELSE 264 SSQ( 2 ) = SSQ( 2 ) + ( ABSA / SSQ( 1 ) )**2 265 END IF 266 END IF 267 130 CONTINUE 268 VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) ) 269 END IF 270* 271 ZLANHE = VALUE 272 RETURN 273* 274* End of ZLANHE 275* 276 END 277