1*> \brief \b ZLARGV generates a vector of plane rotations with real cosines and complex sines. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZLARGV + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlargv.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlargv.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlargv.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZLARGV( N, X, INCX, Y, INCY, C, INCC ) 22* 23* .. Scalar Arguments .. 24* INTEGER INCC, INCX, INCY, N 25* .. 26* .. Array Arguments .. 27* DOUBLE PRECISION C( * ) 28* COMPLEX*16 X( * ), Y( * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> ZLARGV generates a vector of complex plane rotations with real 38*> cosines, determined by elements of the complex vectors x and y. 39*> For i = 1,2,...,n 40*> 41*> ( c(i) s(i) ) ( x(i) ) = ( r(i) ) 42*> ( -conjg(s(i)) c(i) ) ( y(i) ) = ( 0 ) 43*> 44*> where c(i)**2 + ABS(s(i))**2 = 1 45*> 46*> The following conventions are used (these are the same as in ZLARTG, 47*> but differ from the BLAS1 routine ZROTG): 48*> If y(i)=0, then c(i)=1 and s(i)=0. 49*> If x(i)=0, then c(i)=0 and s(i) is chosen so that r(i) is real. 50*> \endverbatim 51* 52* Arguments: 53* ========== 54* 55*> \param[in] N 56*> \verbatim 57*> N is INTEGER 58*> The number of plane rotations to be generated. 59*> \endverbatim 60*> 61*> \param[in,out] X 62*> \verbatim 63*> X is COMPLEX*16 array, dimension (1+(N-1)*INCX) 64*> On entry, the vector x. 65*> On exit, x(i) is overwritten by r(i), for i = 1,...,n. 66*> \endverbatim 67*> 68*> \param[in] INCX 69*> \verbatim 70*> INCX is INTEGER 71*> The increment between elements of X. INCX > 0. 72*> \endverbatim 73*> 74*> \param[in,out] Y 75*> \verbatim 76*> Y is COMPLEX*16 array, dimension (1+(N-1)*INCY) 77*> On entry, the vector y. 78*> On exit, the sines of the plane rotations. 79*> \endverbatim 80*> 81*> \param[in] INCY 82*> \verbatim 83*> INCY is INTEGER 84*> The increment between elements of Y. INCY > 0. 85*> \endverbatim 86*> 87*> \param[out] C 88*> \verbatim 89*> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC) 90*> The cosines of the plane rotations. 91*> \endverbatim 92*> 93*> \param[in] INCC 94*> \verbatim 95*> INCC is INTEGER 96*> The increment between elements of C. INCC > 0. 97*> \endverbatim 98* 99* Authors: 100* ======== 101* 102*> \author Univ. of Tennessee 103*> \author Univ. of California Berkeley 104*> \author Univ. of Colorado Denver 105*> \author NAG Ltd. 106* 107*> \ingroup complex16OTHERauxiliary 108* 109*> \par Further Details: 110* ===================== 111*> 112*> \verbatim 113*> 114*> 6-6-96 - Modified with a new algorithm by W. Kahan and J. Demmel 115*> 116*> This version has a few statements commented out for thread safety 117*> (machine parameters are computed on each entry). 10 feb 03, SJH. 118*> \endverbatim 119*> 120* ===================================================================== 121 SUBROUTINE ZLARGV( N, X, INCX, Y, INCY, C, INCC ) 122* 123* -- LAPACK auxiliary routine -- 124* -- LAPACK is a software package provided by Univ. of Tennessee, -- 125* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 126* 127* .. Scalar Arguments .. 128 INTEGER INCC, INCX, INCY, N 129* .. 130* .. Array Arguments .. 131 DOUBLE PRECISION C( * ) 132 COMPLEX*16 X( * ), Y( * ) 133* .. 134* 135* ===================================================================== 136* 137* .. Parameters .. 138 DOUBLE PRECISION TWO, ONE, ZERO 139 PARAMETER ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 ) 140 COMPLEX*16 CZERO 141 PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) 142* .. 143* .. Local Scalars .. 144* LOGICAL FIRST 145 146 INTEGER COUNT, I, IC, IX, IY, J 147 DOUBLE PRECISION CS, D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN, 148 $ SAFMN2, SAFMX2, SCALE 149 COMPLEX*16 F, FF, FS, G, GS, R, SN 150* .. 151* .. External Functions .. 152 DOUBLE PRECISION DLAMCH, DLAPY2 153 EXTERNAL DLAMCH, DLAPY2 154* .. 155* .. Intrinsic Functions .. 156 INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG, 157 $ MAX, SQRT 158* .. 159* .. Statement Functions .. 160 DOUBLE PRECISION ABS1, ABSSQ 161* .. 162* .. Save statement .. 163* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2 164* .. 165* .. Data statements .. 166* DATA FIRST / .TRUE. / 167* .. 168* .. Statement Function definitions .. 169 ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) ) 170 ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2 171* .. 172* .. Executable Statements .. 173* 174* IF( FIRST ) THEN 175* FIRST = .FALSE. 176 SAFMIN = DLAMCH( 'S' ) 177 EPS = DLAMCH( 'E' ) 178 SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) / 179 $ LOG( DLAMCH( 'B' ) ) / TWO ) 180 SAFMX2 = ONE / SAFMN2 181* END IF 182 IX = 1 183 IY = 1 184 IC = 1 185 DO 60 I = 1, N 186 F = X( IX ) 187 G = Y( IY ) 188* 189* Use identical algorithm as in ZLARTG 190* 191 SCALE = MAX( ABS1( F ), ABS1( G ) ) 192 FS = F 193 GS = G 194 COUNT = 0 195 IF( SCALE.GE.SAFMX2 ) THEN 196 10 CONTINUE 197 COUNT = COUNT + 1 198 FS = FS*SAFMN2 199 GS = GS*SAFMN2 200 SCALE = SCALE*SAFMN2 201 IF( SCALE.GE.SAFMX2 .AND. COUNT .LT. 20 ) 202 $ GO TO 10 203 ELSE IF( SCALE.LE.SAFMN2 ) THEN 204 IF( G.EQ.CZERO ) THEN 205 CS = ONE 206 SN = CZERO 207 R = F 208 GO TO 50 209 END IF 210 20 CONTINUE 211 COUNT = COUNT - 1 212 FS = FS*SAFMX2 213 GS = GS*SAFMX2 214 SCALE = SCALE*SAFMX2 215 IF( SCALE.LE.SAFMN2 ) 216 $ GO TO 20 217 END IF 218 F2 = ABSSQ( FS ) 219 G2 = ABSSQ( GS ) 220 IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN 221* 222* This is a rare case: F is very small. 223* 224 IF( F.EQ.CZERO ) THEN 225 CS = ZERO 226 R = DLAPY2( DBLE( G ), DIMAG( G ) ) 227* Do complex/real division explicitly with two real 228* divisions 229 D = DLAPY2( DBLE( GS ), DIMAG( GS ) ) 230 SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D ) 231 GO TO 50 232 END IF 233 F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) ) 234* G2 and G2S are accurate 235* G2 is at least SAFMIN, and G2S is at least SAFMN2 236 G2S = SQRT( G2 ) 237* Error in CS from underflow in F2S is at most 238* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS 239* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN, 240* and so CS .lt. sqrt(SAFMIN) 241* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN 242* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS) 243* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S 244 CS = F2S / G2S 245* Make sure abs(FF) = 1 246* Do complex/real division explicitly with 2 real divisions 247 IF( ABS1( F ).GT.ONE ) THEN 248 D = DLAPY2( DBLE( F ), DIMAG( F ) ) 249 FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D ) 250 ELSE 251 DR = SAFMX2*DBLE( F ) 252 DI = SAFMX2*DIMAG( F ) 253 D = DLAPY2( DR, DI ) 254 FF = DCMPLX( DR / D, DI / D ) 255 END IF 256 SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S ) 257 R = CS*F + SN*G 258 ELSE 259* 260* This is the most common case. 261* Neither F2 nor F2/G2 are less than SAFMIN 262* F2S cannot overflow, and it is accurate 263* 264 F2S = SQRT( ONE+G2 / F2 ) 265* Do the F2S(real)*FS(complex) multiply with two real 266* multiplies 267 R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) ) 268 CS = ONE / F2S 269 D = F2 + G2 270* Do complex/real division explicitly with two real divisions 271 SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D ) 272 SN = SN*DCONJG( GS ) 273 IF( COUNT.NE.0 ) THEN 274 IF( COUNT.GT.0 ) THEN 275 DO 30 J = 1, COUNT 276 R = R*SAFMX2 277 30 CONTINUE 278 ELSE 279 DO 40 J = 1, -COUNT 280 R = R*SAFMN2 281 40 CONTINUE 282 END IF 283 END IF 284 END IF 285 50 CONTINUE 286 C( IC ) = CS 287 Y( IY ) = SN 288 X( IX ) = R 289 IC = IC + INCC 290 IY = IY + INCY 291 IX = IX + INCX 292 60 CONTINUE 293 RETURN 294* 295* End of ZLARGV 296* 297 END 298