1*> \brief \b ZTRTI2 computes the inverse of a triangular matrix (unblocked algorithm). 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download ZTRTI2 + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztrti2.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztrti2.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztrti2.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE ZTRTI2( UPLO, DIAG, N, A, LDA, INFO ) 22* 23* .. Scalar Arguments .. 24* CHARACTER DIAG, UPLO 25* INTEGER INFO, LDA, N 26* .. 27* .. Array Arguments .. 28* COMPLEX*16 A( LDA, * ) 29* .. 30* 31* 32*> \par Purpose: 33* ============= 34*> 35*> \verbatim 36*> 37*> ZTRTI2 computes the inverse of a complex upper or lower triangular 38*> matrix. 39*> 40*> This is the Level 2 BLAS version of the algorithm. 41*> \endverbatim 42* 43* Arguments: 44* ========== 45* 46*> \param[in] UPLO 47*> \verbatim 48*> UPLO is CHARACTER*1 49*> Specifies whether the matrix A is upper or lower triangular. 50*> = 'U': Upper triangular 51*> = 'L': Lower triangular 52*> \endverbatim 53*> 54*> \param[in] DIAG 55*> \verbatim 56*> DIAG is CHARACTER*1 57*> Specifies whether or not the matrix A is unit triangular. 58*> = 'N': Non-unit triangular 59*> = 'U': Unit triangular 60*> \endverbatim 61*> 62*> \param[in] N 63*> \verbatim 64*> N is INTEGER 65*> The order of the matrix A. N >= 0. 66*> \endverbatim 67*> 68*> \param[in,out] A 69*> \verbatim 70*> A is COMPLEX*16 array, dimension (LDA,N) 71*> On entry, the triangular matrix A. If UPLO = 'U', the 72*> leading n by n upper triangular part of the array A contains 73*> the upper triangular matrix, and the strictly lower 74*> triangular part of A is not referenced. If UPLO = 'L', the 75*> leading n by n lower triangular part of the array A contains 76*> the lower triangular matrix, and the strictly upper 77*> triangular part of A is not referenced. If DIAG = 'U', the 78*> diagonal elements of A are also not referenced and are 79*> assumed to be 1. 80*> 81*> On exit, the (triangular) inverse of the original matrix, in 82*> the same storage format. 83*> \endverbatim 84*> 85*> \param[in] LDA 86*> \verbatim 87*> LDA is INTEGER 88*> The leading dimension of the array A. LDA >= max(1,N). 89*> \endverbatim 90*> 91*> \param[out] INFO 92*> \verbatim 93*> INFO is INTEGER 94*> = 0: successful exit 95*> < 0: if INFO = -k, the k-th argument had an illegal value 96*> \endverbatim 97* 98* Authors: 99* ======== 100* 101*> \author Univ. of Tennessee 102*> \author Univ. of California Berkeley 103*> \author Univ. of Colorado Denver 104*> \author NAG Ltd. 105* 106*> \ingroup complex16OTHERcomputational 107* 108* ===================================================================== 109 SUBROUTINE ZTRTI2( UPLO, DIAG, N, A, LDA, INFO ) 110* 111* -- LAPACK computational routine -- 112* -- LAPACK is a software package provided by Univ. of Tennessee, -- 113* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 114* 115* .. Scalar Arguments .. 116 CHARACTER DIAG, UPLO 117 INTEGER INFO, LDA, N 118* .. 119* .. Array Arguments .. 120 COMPLEX*16 A( LDA, * ) 121* .. 122* 123* ===================================================================== 124* 125* .. Parameters .. 126 COMPLEX*16 ONE 127 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) ) 128* .. 129* .. Local Scalars .. 130 LOGICAL NOUNIT, UPPER 131 INTEGER J 132 COMPLEX*16 AJJ 133* .. 134* .. External Functions .. 135 LOGICAL LSAME 136 EXTERNAL LSAME 137* .. 138* .. External Subroutines .. 139 EXTERNAL XERBLA, ZSCAL, ZTRMV 140* .. 141* .. Intrinsic Functions .. 142 INTRINSIC MAX 143* .. 144* .. Executable Statements .. 145* 146* Test the input parameters. 147* 148 INFO = 0 149 UPPER = LSAME( UPLO, 'U' ) 150 NOUNIT = LSAME( DIAG, 'N' ) 151 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN 152 INFO = -1 153 ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN 154 INFO = -2 155 ELSE IF( N.LT.0 ) THEN 156 INFO = -3 157 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN 158 INFO = -5 159 END IF 160 IF( INFO.NE.0 ) THEN 161 CALL XERBLA( 'ZTRTI2', -INFO ) 162 RETURN 163 END IF 164* 165 IF( UPPER ) THEN 166* 167* Compute inverse of upper triangular matrix. 168* 169 DO 10 J = 1, N 170 IF( NOUNIT ) THEN 171 A( J, J ) = ONE / A( J, J ) 172 AJJ = -A( J, J ) 173 ELSE 174 AJJ = -ONE 175 END IF 176* 177* Compute elements 1:j-1 of j-th column. 178* 179 CALL ZTRMV( 'Upper', 'No transpose', DIAG, J-1, A, LDA, 180 $ A( 1, J ), 1 ) 181 CALL ZSCAL( J-1, AJJ, A( 1, J ), 1 ) 182 10 CONTINUE 183 ELSE 184* 185* Compute inverse of lower triangular matrix. 186* 187 DO 20 J = N, 1, -1 188 IF( NOUNIT ) THEN 189 A( J, J ) = ONE / A( J, J ) 190 AJJ = -A( J, J ) 191 ELSE 192 AJJ = -ONE 193 END IF 194 IF( J.LT.N ) THEN 195* 196* Compute elements j+1:n of j-th column. 197* 198 CALL ZTRMV( 'Lower', 'No transpose', DIAG, N-J, 199 $ A( J+1, J+1 ), LDA, A( J+1, J ), 1 ) 200 CALL ZSCAL( N-J, AJJ, A( J+1, J ), 1 ) 201 END IF 202 20 CONTINUE 203 END IF 204* 205 RETURN 206* 207* End of ZTRTI2 208* 209 END 210