1*> \brief \b CLAVHE
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE CLAVHE( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
12*                          LDB, INFO )
13*
14*       .. Scalar Arguments ..
15*       CHARACTER          DIAG, TRANS, UPLO
16*       INTEGER            INFO, LDA, LDB, N, NRHS
17*       ..
18*       .. Array Arguments ..
19*       INTEGER            IPIV( * )
20*       COMPLEX            A( LDA, * ), B( LDB, * )
21*       ..
22*
23*
24*> \par Purpose:
25*  =============
26*>
27*> \verbatim
28*>
29*> CLAVHE performs one of the matrix-vector operations
30*>    x := A*x  or  x := A^H*x,
31*> where x is an N element vector and  A is one of the factors
32*> from the block U*D*U' or L*D*L' factorization computed by CHETRF.
33*>
34*> If TRANS = 'N', multiplies by U  or U * D  (or L  or L * D)
35*> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
36*> \endverbatim
37*
38*  Arguments:
39*  ==========
40*
41*> \param[in] UPLO
42*> \verbatim
43*>          UPLO is CHARACTER*1
44*>          Specifies whether the factor stored in A is upper or lower
45*>          triangular.
46*>          = 'U':  Upper triangular
47*>          = 'L':  Lower triangular
48*> \endverbatim
49*>
50*> \param[in] TRANS
51*> \verbatim
52*>          TRANS is CHARACTER*1
53*>          Specifies the operation to be performed:
54*>          = 'N':  x := A*x
55*>          = 'C':   x := A^H*x
56*> \endverbatim
57*>
58*> \param[in] DIAG
59*> \verbatim
60*>          DIAG is CHARACTER*1
61*>          Specifies whether or not the diagonal blocks are unit
62*>          matrices.  If the diagonal blocks are assumed to be unit,
63*>          then A = U or A = L, otherwise A = U*D or A = L*D.
64*>          = 'U':  Diagonal blocks are assumed to be unit matrices.
65*>          = 'N':  Diagonal blocks are assumed to be non-unit matrices.
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*>          N is INTEGER
71*>          The number of rows and columns of the matrix A.  N >= 0.
72*> \endverbatim
73*>
74*> \param[in] NRHS
75*> \verbatim
76*>          NRHS is INTEGER
77*>          The number of right hand sides, i.e., the number of vectors
78*>          x to be multiplied by A.  NRHS >= 0.
79*> \endverbatim
80*>
81*> \param[in] A
82*> \verbatim
83*>          A is COMPLEX array, dimension (LDA,N)
84*>          The block diagonal matrix D and the multipliers used to
85*>          obtain the factor U or L as computed by CHETRF_ROOK.
86*>          Stored as a 2-D triangular matrix.
87*> \endverbatim
88*>
89*> \param[in] LDA
90*> \verbatim
91*>          LDA is INTEGER
92*>          The leading dimension of the array A.  LDA >= max(1,N).
93*> \endverbatim
94*>
95*> \param[in] IPIV
96*> \verbatim
97*>          IPIV is INTEGER array, dimension (N)
98*>          Details of the interchanges and the block structure of D,
99*>          as determined by CHETRF.
100*>
101*>          If UPLO = 'U':
102*>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
103*>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
104*>               (If IPIV( k ) = k, no interchange was done).
105*>
106*>               If IPIV(k) = IPIV(k-1) < 0, then rows and
107*>               columns k-1 and -IPIV(k) were interchanged,
108*>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
109*>
110*>          If UPLO = 'L':
111*>               If IPIV(k) > 0, then rows and columns k and IPIV(k)
112*>               were interchanged and D(k,k) is a 1-by-1 diagonal block.
113*>               (If IPIV( k ) = k, no interchange was done).
114*>
115*>               If IPIV(k) = IPIV(k+1) < 0, then rows and
116*>               columns k+1 and -IPIV(k) were interchanged,
117*>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
118*> \endverbatim
119*>
120*> \param[in,out] B
121*> \verbatim
122*>          B is COMPLEX array, dimension (LDB,NRHS)
123*>          On entry, B contains NRHS vectors of length N.
124*>          On exit, B is overwritten with the product A * B.
125*> \endverbatim
126*>
127*> \param[in] LDB
128*> \verbatim
129*>          LDB is INTEGER
130*>          The leading dimension of the array B.  LDB >= max(1,N).
131*> \endverbatim
132*>
133*> \param[out] INFO
134*> \verbatim
135*>          INFO is INTEGER
136*>          = 0: successful exit
137*>          < 0: if INFO = -k, the k-th argument had an illegal value
138*> \endverbatim
139*
140*  Authors:
141*  ========
142*
143*> \author Univ. of Tennessee
144*> \author Univ. of California Berkeley
145*> \author Univ. of Colorado Denver
146*> \author NAG Ltd.
147*
148*> \ingroup complex_lin
149*
150*  =====================================================================
151      SUBROUTINE CLAVHE( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
152     $                   LDB, INFO )
153*
154*  -- LAPACK test routine --
155*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
156*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157*
158*     .. Scalar Arguments ..
159      CHARACTER          DIAG, TRANS, UPLO
160      INTEGER            INFO, LDA, LDB, N, NRHS
161*     ..
162*     .. Array Arguments ..
163      INTEGER            IPIV( * )
164      COMPLEX            A( LDA, * ), B( LDB, * )
165*     ..
166*
167*  =====================================================================
168*
169*     .. Parameters ..
170      COMPLEX            ONE
171      PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
172*     ..
173*     .. Local Scalars ..
174      LOGICAL            NOUNIT
175      INTEGER            J, K, KP
176      COMPLEX            D11, D12, D21, D22, T1, T2
177*     ..
178*     .. External Functions ..
179      LOGICAL            LSAME
180      EXTERNAL           LSAME
181*     ..
182*     .. External Subroutines ..
183      EXTERNAL           CGEMV, CGERU, CLACGV, CSCAL, CSWAP, XERBLA
184*     ..
185*     .. Intrinsic Functions ..
186      INTRINSIC          ABS, CONJG, MAX
187*     ..
188*     .. Executable Statements ..
189*
190*     Test the input parameters.
191*
192      INFO = 0
193      IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
194         INFO = -1
195      ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
196     $          THEN
197         INFO = -2
198      ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
199     $          THEN
200         INFO = -3
201      ELSE IF( N.LT.0 ) THEN
202         INFO = -4
203      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
204         INFO = -6
205      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
206         INFO = -9
207      END IF
208      IF( INFO.NE.0 ) THEN
209         CALL XERBLA( 'CLAVHE ', -INFO )
210         RETURN
211      END IF
212*
213*     Quick return if possible.
214*
215      IF( N.EQ.0 )
216     $   RETURN
217*
218      NOUNIT = LSAME( DIAG, 'N' )
219*------------------------------------------
220*
221*     Compute  B := A * B  (No transpose)
222*
223*------------------------------------------
224      IF( LSAME( TRANS, 'N' ) ) THEN
225*
226*        Compute  B := U*B
227*        where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
228*
229         IF( LSAME( UPLO, 'U' ) ) THEN
230*
231*        Loop forward applying the transformations.
232*
233            K = 1
234   10       CONTINUE
235            IF( K.GT.N )
236     $         GO TO 30
237            IF( IPIV( K ).GT.0 ) THEN
238*
239*              1 x 1 pivot block
240*
241*              Multiply by the diagonal element if forming U * D.
242*
243               IF( NOUNIT )
244     $            CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
245*
246*              Multiply by  P(K) * inv(U(K))  if K > 1.
247*
248               IF( K.GT.1 ) THEN
249*
250*                 Apply the transformation.
251*
252                  CALL CGERU( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
253     $                        LDB, B( 1, 1 ), LDB )
254*
255*                 Interchange if P(K) != I.
256*
257                  KP = IPIV( K )
258                  IF( KP.NE.K )
259     $               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
260               END IF
261               K = K + 1
262            ELSE
263*
264*              2 x 2 pivot block
265*
266*              Multiply by the diagonal block if forming U * D.
267*
268               IF( NOUNIT ) THEN
269                  D11 = A( K, K )
270                  D22 = A( K+1, K+1 )
271                  D12 = A( K, K+1 )
272                  D21 = CONJG( D12 )
273                  DO 20 J = 1, NRHS
274                     T1 = B( K, J )
275                     T2 = B( K+1, J )
276                     B( K, J ) = D11*T1 + D12*T2
277                     B( K+1, J ) = D21*T1 + D22*T2
278   20             CONTINUE
279               END IF
280*
281*              Multiply by  P(K) * inv(U(K))  if K > 1.
282*
283               IF( K.GT.1 ) THEN
284*
285*                 Apply the transformations.
286*
287                  CALL CGERU( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
288     $                        LDB, B( 1, 1 ), LDB )
289                  CALL CGERU( K-1, NRHS, ONE, A( 1, K+1 ), 1,
290     $                        B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
291*
292*                 Interchange if P(K) != I.
293*
294                  KP = ABS( IPIV( K ) )
295                  IF( KP.NE.K )
296     $               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
297               END IF
298               K = K + 2
299            END IF
300            GO TO 10
301   30       CONTINUE
302*
303*        Compute  B := L*B
304*        where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
305*
306         ELSE
307*
308*           Loop backward applying the transformations to B.
309*
310            K = N
311   40       CONTINUE
312            IF( K.LT.1 )
313     $         GO TO 60
314*
315*           Test the pivot index.  If greater than zero, a 1 x 1
316*           pivot was used, otherwise a 2 x 2 pivot was used.
317*
318            IF( IPIV( K ).GT.0 ) THEN
319*
320*              1 x 1 pivot block:
321*
322*              Multiply by the diagonal element if forming L * D.
323*
324               IF( NOUNIT )
325     $            CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
326*
327*              Multiply by  P(K) * inv(L(K))  if K < N.
328*
329               IF( K.NE.N ) THEN
330                  KP = IPIV( K )
331*
332*                 Apply the transformation.
333*
334                  CALL CGERU( N-K, NRHS, ONE, A( K+1, K ), 1,
335     $                        B( K, 1 ), LDB, B( K+1, 1 ), LDB )
336*
337*                 Interchange if a permutation was applied at the
338*                 K-th step of the factorization.
339*
340                  IF( KP.NE.K )
341     $               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
342               END IF
343               K = K - 1
344*
345            ELSE
346*
347*              2 x 2 pivot block:
348*
349*              Multiply by the diagonal block if forming L * D.
350*
351               IF( NOUNIT ) THEN
352                  D11 = A( K-1, K-1 )
353                  D22 = A( K, K )
354                  D21 = A( K, K-1 )
355                  D12 = CONJG( D21 )
356                  DO 50 J = 1, NRHS
357                     T1 = B( K-1, J )
358                     T2 = B( K, J )
359                     B( K-1, J ) = D11*T1 + D12*T2
360                     B( K, J ) = D21*T1 + D22*T2
361   50             CONTINUE
362               END IF
363*
364*              Multiply by  P(K) * inv(L(K))  if K < N.
365*
366               IF( K.NE.N ) THEN
367*
368*                 Apply the transformation.
369*
370                  CALL CGERU( N-K, NRHS, ONE, A( K+1, K ), 1,
371     $                        B( K, 1 ), LDB, B( K+1, 1 ), LDB )
372                  CALL CGERU( N-K, NRHS, ONE, A( K+1, K-1 ), 1,
373     $                        B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
374*
375*                 Interchange if a permutation was applied at the
376*                 K-th step of the factorization.
377*
378                  KP = ABS( IPIV( K ) )
379                  IF( KP.NE.K )
380     $               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
381               END IF
382               K = K - 2
383            END IF
384            GO TO 40
385   60       CONTINUE
386         END IF
387*--------------------------------------------------
388*
389*     Compute  B := A^H * B  (conjugate transpose)
390*
391*--------------------------------------------------
392      ELSE
393*
394*        Form  B := U^H*B
395*        where U  = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
396*        and   U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
397*
398         IF( LSAME( UPLO, 'U' ) ) THEN
399*
400*           Loop backward applying the transformations.
401*
402            K = N
403   70       IF( K.LT.1 )
404     $         GO TO 90
405*
406*           1 x 1 pivot block.
407*
408            IF( IPIV( K ).GT.0 ) THEN
409               IF( K.GT.1 ) THEN
410*
411*                 Interchange if P(K) != I.
412*
413                  KP = IPIV( K )
414                  IF( KP.NE.K )
415     $               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
416*
417*                 Apply the transformation
418*                    y = y - B' conjg(x),
419*                 where x is a column of A and y is a row of B.
420*
421                  CALL CLACGV( NRHS, B( K, 1 ), LDB )
422                  CALL CGEMV( 'Conjugate', K-1, NRHS, ONE, B, LDB,
423     $                        A( 1, K ), 1, ONE, B( K, 1 ), LDB )
424                  CALL CLACGV( NRHS, B( K, 1 ), LDB )
425               END IF
426               IF( NOUNIT )
427     $            CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
428               K = K - 1
429*
430*           2 x 2 pivot block.
431*
432            ELSE
433               IF( K.GT.2 ) THEN
434*
435*                 Interchange if P(K) != I.
436*
437                  KP = ABS( IPIV( K ) )
438                  IF( KP.NE.K-1 )
439     $               CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
440     $                           LDB )
441*
442*                 Apply the transformations
443*                    y = y - B' conjg(x),
444*                 where x is a block column of A and y is a block
445*                 row of B.
446*
447                  CALL CLACGV( NRHS, B( K, 1 ), LDB )
448                  CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
449     $                        A( 1, K ), 1, ONE, B( K, 1 ), LDB )
450                  CALL CLACGV( NRHS, B( K, 1 ), LDB )
451*
452                  CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
453                  CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
454     $                        A( 1, K-1 ), 1, ONE, B( K-1, 1 ), LDB )
455                  CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
456               END IF
457*
458*              Multiply by the diagonal block if non-unit.
459*
460               IF( NOUNIT ) THEN
461                  D11 = A( K-1, K-1 )
462                  D22 = A( K, K )
463                  D12 = A( K-1, K )
464                  D21 = CONJG( D12 )
465                  DO 80 J = 1, NRHS
466                     T1 = B( K-1, J )
467                     T2 = B( K, J )
468                     B( K-1, J ) = D11*T1 + D12*T2
469                     B( K, J ) = D21*T1 + D22*T2
470   80             CONTINUE
471               END IF
472               K = K - 2
473            END IF
474            GO TO 70
475   90       CONTINUE
476*
477*        Form  B := L^H*B
478*        where L  = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
479*        and   L^H = inv(L^H(m))*P(m)* ... *inv(L^H(1))*P(1)
480*
481         ELSE
482*
483*           Loop forward applying the L-transformations.
484*
485            K = 1
486  100       CONTINUE
487            IF( K.GT.N )
488     $         GO TO 120
489*
490*           1 x 1 pivot block
491*
492            IF( IPIV( K ).GT.0 ) THEN
493               IF( K.LT.N ) THEN
494*
495*                 Interchange if P(K) != I.
496*
497                  KP = IPIV( K )
498                  IF( KP.NE.K )
499     $               CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
500*
501*                 Apply the transformation
502*
503                  CALL CLACGV( NRHS, B( K, 1 ), LDB )
504                  CALL CGEMV( 'Conjugate', N-K, NRHS, ONE, B( K+1, 1 ),
505     $                        LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
506                  CALL CLACGV( NRHS, B( K, 1 ), LDB )
507               END IF
508               IF( NOUNIT )
509     $            CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
510               K = K + 1
511*
512*           2 x 2 pivot block.
513*
514            ELSE
515               IF( K.LT.N-1 ) THEN
516*
517*              Interchange if P(K) != I.
518*
519                  KP = ABS( IPIV( K ) )
520                  IF( KP.NE.K+1 )
521     $               CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
522     $                           LDB )
523*
524*                 Apply the transformation
525*
526                  CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
527                  CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
528     $                        B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, ONE,
529     $                        B( K+1, 1 ), LDB )
530                  CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
531*
532                  CALL CLACGV( NRHS, B( K, 1 ), LDB )
533                  CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
534     $                        B( K+2, 1 ), LDB, A( K+2, K ), 1, ONE,
535     $                        B( K, 1 ), LDB )
536                  CALL CLACGV( NRHS, B( K, 1 ), LDB )
537               END IF
538*
539*              Multiply by the diagonal block if non-unit.
540*
541               IF( NOUNIT ) THEN
542                  D11 = A( K, K )
543                  D22 = A( K+1, K+1 )
544                  D21 = A( K+1, K )
545                  D12 = CONJG( D21 )
546                  DO 110 J = 1, NRHS
547                     T1 = B( K, J )
548                     T2 = B( K+1, J )
549                     B( K, J ) = D11*T1 + D12*T2
550                     B( K+1, J ) = D21*T1 + D22*T2
551  110             CONTINUE
552               END IF
553               K = K + 2
554            END IF
555            GO TO 100
556  120       CONTINUE
557         END IF
558*
559      END IF
560      RETURN
561*
562*     End of CLAVHE
563*
564      END
565