1*> \brief \b SCHKLQ 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE SCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, 12* NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC, 13* B, X, XACT, TAU, WORK, RWORK, NOUT ) 14* 15* .. Scalar Arguments .. 16* LOGICAL TSTERR 17* INTEGER NM, NMAX, NN, NNB, NOUT, NRHS 18* REAL THRESH 19* .. 20* .. Array Arguments .. 21* LOGICAL DOTYPE( * ) 22* INTEGER MVAL( * ), NBVAL( * ), NVAL( * ), 23* $ NXVAL( * ) 24* REAL A( * ), AC( * ), AF( * ), AL( * ), AQ( * ), 25* $ B( * ), RWORK( * ), TAU( * ), WORK( * ), 26* $ X( * ), XACT( * ) 27* .. 28* 29* 30*> \par Purpose: 31* ============= 32*> 33*> \verbatim 34*> 35*> SCHKLQ tests SGELQF, SORGLQ and SORMLQ. 36*> \endverbatim 37* 38* Arguments: 39* ========== 40* 41*> \param[in] DOTYPE 42*> \verbatim 43*> DOTYPE is LOGICAL array, dimension (NTYPES) 44*> The matrix types to be used for testing. Matrices of type j 45*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = 46*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. 47*> \endverbatim 48*> 49*> \param[in] NM 50*> \verbatim 51*> NM is INTEGER 52*> The number of values of M contained in the vector MVAL. 53*> \endverbatim 54*> 55*> \param[in] MVAL 56*> \verbatim 57*> MVAL is INTEGER array, dimension (NM) 58*> The values of the matrix row dimension M. 59*> \endverbatim 60*> 61*> \param[in] NN 62*> \verbatim 63*> NN is INTEGER 64*> The number of values of N contained in the vector NVAL. 65*> \endverbatim 66*> 67*> \param[in] NVAL 68*> \verbatim 69*> NVAL is INTEGER array, dimension (NN) 70*> The values of the matrix column dimension N. 71*> \endverbatim 72*> 73*> \param[in] NNB 74*> \verbatim 75*> NNB is INTEGER 76*> The number of values of NB and NX contained in the 77*> vectors NBVAL and NXVAL. The blocking parameters are used 78*> in pairs (NB,NX). 79*> \endverbatim 80*> 81*> \param[in] NBVAL 82*> \verbatim 83*> NBVAL is INTEGER array, dimension (NNB) 84*> The values of the blocksize NB. 85*> \endverbatim 86*> 87*> \param[in] NXVAL 88*> \verbatim 89*> NXVAL is INTEGER array, dimension (NNB) 90*> The values of the crossover point NX. 91*> \endverbatim 92*> 93*> \param[in] NRHS 94*> \verbatim 95*> NRHS is INTEGER 96*> The number of right hand side vectors to be generated for 97*> each linear system. 98*> \endverbatim 99*> 100*> \param[in] THRESH 101*> \verbatim 102*> THRESH is REAL 103*> The threshold value for the test ratios. A result is 104*> included in the output file if RESULT >= THRESH. To have 105*> every test ratio printed, use THRESH = 0. 106*> \endverbatim 107*> 108*> \param[in] TSTERR 109*> \verbatim 110*> TSTERR is LOGICAL 111*> Flag that indicates whether error exits are to be tested. 112*> \endverbatim 113*> 114*> \param[in] NMAX 115*> \verbatim 116*> NMAX is INTEGER 117*> The maximum value permitted for M or N, used in dimensioning 118*> the work arrays. 119*> \endverbatim 120*> 121*> \param[out] A 122*> \verbatim 123*> A is REAL array, dimension (NMAX*NMAX) 124*> \endverbatim 125*> 126*> \param[out] AF 127*> \verbatim 128*> AF is REAL array, dimension (NMAX*NMAX) 129*> \endverbatim 130*> 131*> \param[out] AQ 132*> \verbatim 133*> AQ is REAL array, dimension (NMAX*NMAX) 134*> \endverbatim 135*> 136*> \param[out] AL 137*> \verbatim 138*> AL is REAL array, dimension (NMAX*NMAX) 139*> \endverbatim 140*> 141*> \param[out] AC 142*> \verbatim 143*> AC is REAL array, dimension (NMAX*NMAX) 144*> \endverbatim 145*> 146*> \param[out] B 147*> \verbatim 148*> B is REAL array, dimension (NMAX*NRHS) 149*> \endverbatim 150*> 151*> \param[out] X 152*> \verbatim 153*> X is REAL array, dimension (NMAX*NRHS) 154*> \endverbatim 155*> 156*> \param[out] XACT 157*> \verbatim 158*> XACT is REAL array, dimension (NMAX*NRHS) 159*> \endverbatim 160*> 161*> \param[out] TAU 162*> \verbatim 163*> TAU is REAL array, dimension (NMAX) 164*> \endverbatim 165*> 166*> \param[out] WORK 167*> \verbatim 168*> WORK is REAL array, dimension (NMAX*NMAX) 169*> \endverbatim 170*> 171*> \param[out] RWORK 172*> \verbatim 173*> RWORK is REAL array, dimension (NMAX) 174*> \endverbatim 175*> 176*> \param[in] NOUT 177*> \verbatim 178*> NOUT is INTEGER 179*> The unit number for output. 180*> \endverbatim 181* 182* Authors: 183* ======== 184* 185*> \author Univ. of Tennessee 186*> \author Univ. of California Berkeley 187*> \author Univ. of Colorado Denver 188*> \author NAG Ltd. 189* 190*> \ingroup single_lin 191* 192* ===================================================================== 193 SUBROUTINE SCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, 194 $ NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC, 195 $ B, X, XACT, TAU, WORK, RWORK, NOUT ) 196* 197* -- LAPACK test routine -- 198* -- LAPACK is a software package provided by Univ. of Tennessee, -- 199* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 200* 201* .. Scalar Arguments .. 202 LOGICAL TSTERR 203 INTEGER NM, NMAX, NN, NNB, NOUT, NRHS 204 REAL THRESH 205* .. 206* .. Array Arguments .. 207 LOGICAL DOTYPE( * ) 208 INTEGER MVAL( * ), NBVAL( * ), NVAL( * ), 209 $ NXVAL( * ) 210 REAL A( * ), AC( * ), AF( * ), AL( * ), AQ( * ), 211 $ B( * ), RWORK( * ), TAU( * ), WORK( * ), 212 $ X( * ), XACT( * ) 213* .. 214* 215* ===================================================================== 216* 217* .. Parameters .. 218 INTEGER NTESTS 219 PARAMETER ( NTESTS = 7 ) 220 INTEGER NTYPES 221 PARAMETER ( NTYPES = 8 ) 222 REAL ZERO 223 PARAMETER ( ZERO = 0.0E0 ) 224* .. 225* .. Local Scalars .. 226 CHARACTER DIST, TYPE 227 CHARACTER*3 PATH 228 INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA, 229 $ LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK, 230 $ NRUN, NT, NX 231 REAL ANORM, CNDNUM 232* .. 233* .. Local Arrays .. 234 INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 ) 235 REAL RESULT( NTESTS ) 236* .. 237* .. External Subroutines .. 238 EXTERNAL ALAERH, ALAHD, ALASUM, SERRLQ, SGELQS, SGET02, 239 $ SLACPY, SLARHS, SLATB4, SLATMS, SLQT01, SLQT02, 240 $ SLQT03, XLAENV 241* .. 242* .. Intrinsic Functions .. 243 INTRINSIC MAX, MIN 244* .. 245* .. Scalars in Common .. 246 LOGICAL LERR, OK 247 CHARACTER*32 SRNAMT 248 INTEGER INFOT, NUNIT 249* .. 250* .. Common blocks .. 251 COMMON / INFOC / INFOT, NUNIT, OK, LERR 252 COMMON / SRNAMC / SRNAMT 253* .. 254* .. Data statements .. 255 DATA ISEEDY / 1988, 1989, 1990, 1991 / 256* .. 257* .. Executable Statements .. 258* 259* Initialize constants and the random number seed. 260* 261 PATH( 1: 1 ) = 'Single precision' 262 PATH( 2: 3 ) = 'LQ' 263 NRUN = 0 264 NFAIL = 0 265 NERRS = 0 266 DO 10 I = 1, 4 267 ISEED( I ) = ISEEDY( I ) 268 10 CONTINUE 269* 270* Test the error exits 271* 272 IF( TSTERR ) 273 $ CALL SERRLQ( PATH, NOUT ) 274 INFOT = 0 275 CALL XLAENV( 2, 2 ) 276* 277 LDA = NMAX 278 LWORK = NMAX*MAX( NMAX, NRHS ) 279* 280* Do for each value of M in MVAL. 281* 282 DO 70 IM = 1, NM 283 M = MVAL( IM ) 284* 285* Do for each value of N in NVAL. 286* 287 DO 60 IN = 1, NN 288 N = NVAL( IN ) 289 MINMN = MIN( M, N ) 290 DO 50 IMAT = 1, NTYPES 291* 292* Do the tests only if DOTYPE( IMAT ) is true. 293* 294 IF( .NOT.DOTYPE( IMAT ) ) 295 $ GO TO 50 296* 297* Set up parameters with SLATB4 and generate a test matrix 298* with SLATMS. 299* 300 CALL SLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, 301 $ CNDNUM, DIST ) 302* 303 SRNAMT = 'SLATMS' 304 CALL SLATMS( M, N, DIST, ISEED, TYPE, RWORK, MODE, 305 $ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA, 306 $ WORK, INFO ) 307* 308* Check error code from SLATMS. 309* 310 IF( INFO.NE.0 ) THEN 311 CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', M, N, -1, 312 $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) 313 GO TO 50 314 END IF 315* 316* Set some values for K: the first value must be MINMN, 317* corresponding to the call of SLQT01; other values are 318* used in the calls of SLQT02, and must not exceed MINMN. 319* 320 KVAL( 1 ) = MINMN 321 KVAL( 2 ) = 0 322 KVAL( 3 ) = 1 323 KVAL( 4 ) = MINMN / 2 324 IF( MINMN.EQ.0 ) THEN 325 NK = 1 326 ELSE IF( MINMN.EQ.1 ) THEN 327 NK = 2 328 ELSE IF( MINMN.LE.3 ) THEN 329 NK = 3 330 ELSE 331 NK = 4 332 END IF 333* 334* Do for each value of K in KVAL 335* 336 DO 40 IK = 1, NK 337 K = KVAL( IK ) 338* 339* Do for each pair of values (NB,NX) in NBVAL and NXVAL. 340* 341 DO 30 INB = 1, NNB 342 NB = NBVAL( INB ) 343 CALL XLAENV( 1, NB ) 344 NX = NXVAL( INB ) 345 CALL XLAENV( 3, NX ) 346 DO I = 1, NTESTS 347 RESULT( I ) = ZERO 348 END DO 349 NT = 2 350 IF( IK.EQ.1 ) THEN 351* 352* Test SGELQF 353* 354 CALL SLQT01( M, N, A, AF, AQ, AL, LDA, TAU, 355 $ WORK, LWORK, RWORK, RESULT( 1 ) ) 356 ELSE IF( M.LE.N ) THEN 357* 358* Test SORGLQ, using factorization 359* returned by SLQT01 360* 361 CALL SLQT02( M, N, K, A, AF, AQ, AL, LDA, TAU, 362 $ WORK, LWORK, RWORK, RESULT( 1 ) ) 363 END IF 364 IF( M.GE.K ) THEN 365* 366* Test SORMLQ, using factorization returned 367* by SLQT01 368* 369 CALL SLQT03( M, N, K, AF, AC, AL, AQ, LDA, TAU, 370 $ WORK, LWORK, RWORK, RESULT( 3 ) ) 371 NT = NT + 4 372* 373* If M>=N and K=N, call SGELQS to solve a system 374* with NRHS right hand sides and compute the 375* residual. 376* 377 IF( K.EQ.M .AND. INB.EQ.1 ) THEN 378* 379* Generate a solution and set the right 380* hand side. 381* 382 SRNAMT = 'SLARHS' 383 CALL SLARHS( PATH, 'New', 'Full', 384 $ 'No transpose', M, N, 0, 0, 385 $ NRHS, A, LDA, XACT, LDA, B, LDA, 386 $ ISEED, INFO ) 387* 388 CALL SLACPY( 'Full', M, NRHS, B, LDA, X, 389 $ LDA ) 390 SRNAMT = 'SGELQS' 391 CALL SGELQS( M, N, NRHS, AF, LDA, TAU, X, 392 $ LDA, WORK, LWORK, INFO ) 393* 394* Check error code from SGELQS. 395* 396 IF( INFO.NE.0 ) 397 $ CALL ALAERH( PATH, 'SGELQS', INFO, 0, ' ', 398 $ M, N, NRHS, -1, NB, IMAT, 399 $ NFAIL, NERRS, NOUT ) 400* 401 CALL SGET02( 'No transpose', M, N, NRHS, A, 402 $ LDA, X, LDA, B, LDA, RWORK, 403 $ RESULT( 7 ) ) 404 NT = NT + 1 405 END IF 406 END IF 407* 408* Print information about the tests that did not 409* pass the threshold. 410* 411 DO 20 I = 1, NT 412 IF( RESULT( I ).GE.THRESH ) THEN 413 IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) 414 $ CALL ALAHD( NOUT, PATH ) 415 WRITE( NOUT, FMT = 9999 )M, N, K, NB, NX, 416 $ IMAT, I, RESULT( I ) 417 NFAIL = NFAIL + 1 418 END IF 419 20 CONTINUE 420 NRUN = NRUN + NT 421 30 CONTINUE 422 40 CONTINUE 423 50 CONTINUE 424 60 CONTINUE 425 70 CONTINUE 426* 427* Print a summary of the results. 428* 429 CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) 430* 431 9999 FORMAT( ' M=', I5, ', N=', I5, ', K=', I5, ', NB=', I4, ', NX=', 432 $ I5, ', type ', I2, ', test(', I2, ')=', G12.5 ) 433 RETURN 434* 435* End of SCHKLQ 436* 437 END 438