1*> \brief \b SGEQLS 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* SUBROUTINE SGEQLS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, 12* INFO ) 13* 14* .. Scalar Arguments .. 15* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS 16* .. 17* .. Array Arguments .. 18* REAL A( LDA, * ), B( LDB, * ), TAU( * ), 19* $ WORK( LWORK ) 20* .. 21* 22* 23*> \par Purpose: 24* ============= 25*> 26*> \verbatim 27*> 28*> Solve the least squares problem 29*> min || A*X - B || 30*> using the QL factorization 31*> A = Q*L 32*> computed by SGEQLF. 33*> \endverbatim 34* 35* Arguments: 36* ========== 37* 38*> \param[in] M 39*> \verbatim 40*> M is INTEGER 41*> The number of rows of the matrix A. M >= 0. 42*> \endverbatim 43*> 44*> \param[in] N 45*> \verbatim 46*> N is INTEGER 47*> The number of columns of the matrix A. M >= N >= 0. 48*> \endverbatim 49*> 50*> \param[in] NRHS 51*> \verbatim 52*> NRHS is INTEGER 53*> The number of columns of B. NRHS >= 0. 54*> \endverbatim 55*> 56*> \param[in] A 57*> \verbatim 58*> A is REAL array, dimension (LDA,N) 59*> Details of the QL factorization of the original matrix A as 60*> returned by SGEQLF. 61*> \endverbatim 62*> 63*> \param[in] LDA 64*> \verbatim 65*> LDA is INTEGER 66*> The leading dimension of the array A. LDA >= M. 67*> \endverbatim 68*> 69*> \param[in] TAU 70*> \verbatim 71*> TAU is REAL array, dimension (N) 72*> Details of the orthogonal matrix Q. 73*> \endverbatim 74*> 75*> \param[in,out] B 76*> \verbatim 77*> B is REAL array, dimension (LDB,NRHS) 78*> On entry, the m-by-nrhs right hand side matrix B. 79*> On exit, the n-by-nrhs solution matrix X, stored in rows 80*> m-n+1:m. 81*> \endverbatim 82*> 83*> \param[in] LDB 84*> \verbatim 85*> LDB is INTEGER 86*> The leading dimension of the array B. LDB >= M. 87*> \endverbatim 88*> 89*> \param[out] WORK 90*> \verbatim 91*> WORK is REAL array, dimension (LWORK) 92*> \endverbatim 93*> 94*> \param[in] LWORK 95*> \verbatim 96*> LWORK is INTEGER 97*> The length of the array WORK. LWORK must be at least NRHS, 98*> and should be at least NRHS*NB, where NB is the block size 99*> for this environment. 100*> \endverbatim 101*> 102*> \param[out] INFO 103*> \verbatim 104*> INFO is INTEGER 105*> = 0: successful exit 106*> < 0: if INFO = -i, the i-th argument had an illegal value 107*> \endverbatim 108* 109* Authors: 110* ======== 111* 112*> \author Univ. of Tennessee 113*> \author Univ. of California Berkeley 114*> \author Univ. of Colorado Denver 115*> \author NAG Ltd. 116* 117*> \ingroup single_lin 118* 119* ===================================================================== 120 SUBROUTINE SGEQLS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, 121 $ INFO ) 122* 123* -- LAPACK test routine -- 124* -- LAPACK is a software package provided by Univ. of Tennessee, -- 125* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 126* 127* .. Scalar Arguments .. 128 INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS 129* .. 130* .. Array Arguments .. 131 REAL A( LDA, * ), B( LDB, * ), TAU( * ), 132 $ WORK( LWORK ) 133* .. 134* 135* ===================================================================== 136* 137* .. Parameters .. 138 REAL ONE 139 PARAMETER ( ONE = 1.0E+0 ) 140* .. 141* .. External Subroutines .. 142 EXTERNAL SORMQL, STRSM, XERBLA 143* .. 144* .. Intrinsic Functions .. 145 INTRINSIC MAX 146* .. 147* .. Executable Statements .. 148* 149* Test the input arguments. 150* 151 INFO = 0 152 IF( M.LT.0 ) THEN 153 INFO = -1 154 ELSE IF( N.LT.0 .OR. N.GT.M ) THEN 155 INFO = -2 156 ELSE IF( NRHS.LT.0 ) THEN 157 INFO = -3 158 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN 159 INFO = -5 160 ELSE IF( LDB.LT.MAX( 1, M ) ) THEN 161 INFO = -8 162 ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 ) 163 $ THEN 164 INFO = -10 165 END IF 166 IF( INFO.NE.0 ) THEN 167 CALL XERBLA( 'SGEQLS', -INFO ) 168 RETURN 169 END IF 170* 171* Quick return if possible 172* 173 IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 ) 174 $ RETURN 175* 176* B := Q' * B 177* 178 CALL SORMQL( 'Left', 'Transpose', M, NRHS, N, A, LDA, TAU, B, LDB, 179 $ WORK, LWORK, INFO ) 180* 181* Solve L*X = B(m-n+1:m,:) 182* 183 CALL STRSM( 'Left', 'Lower', 'No transpose', 'Non-unit', N, NRHS, 184 $ ONE, A( M-N+1, 1 ), LDA, B( M-N+1, 1 ), LDB ) 185* 186 RETURN 187* 188* End of SGEQLS 189* 190 END 191