1*> \brief \b SSYT01_3
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE SSYT01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
12*                            LDC, RWORK, RESID )
13*
14*       .. Scalar Arguments ..
15*       CHARACTER          UPLO
16*       INTEGER            LDA, LDAFAC, LDC, N
17*       DOUBLE PRECISION   RESID
18*       ..
19*       .. Array Arguments ..
20*       INTEGER            IPIV( * )
21*       DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
22*      $                   E( * ), RWORK( * )
23*       ..
24*
25*
26*> \par Purpose:
27*  =============
28*>
29*> \verbatim
30*>
31*> SSYT01_3 reconstructs a symmetric indefinite matrix A from its
32*> block L*D*L' or U*D*U' factorization computed by SSYTRF_RK
33*> (or SSYTRF_BK) and computes the residual
34*>    norm( C - A ) / ( N * norm(A) * EPS ),
35*> where C is the reconstructed matrix and EPS is the machine epsilon.
36*> \endverbatim
37*
38*  Arguments:
39*  ==========
40*
41*> \param[in] UPLO
42*> \verbatim
43*>          UPLO is CHARACTER*1
44*>          Specifies whether the upper or lower triangular part of the
45*>          symmetric matrix A is stored:
46*>          = 'U':  Upper triangular
47*>          = 'L':  Lower triangular
48*> \endverbatim
49*>
50*> \param[in] N
51*> \verbatim
52*>          N is INTEGER
53*>          The number of rows and columns of the matrix A.  N >= 0.
54*> \endverbatim
55*>
56*> \param[in] A
57*> \verbatim
58*>          A is DOUBLE PRECISION array, dimension (LDA,N)
59*>          The original symmetric matrix A.
60*> \endverbatim
61*>
62*> \param[in] LDA
63*> \verbatim
64*>          LDA is INTEGER
65*>          The leading dimension of the array A.  LDA >= max(1,N)
66*> \endverbatim
67*>
68*> \param[in] AFAC
69*> \verbatim
70*>          AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
71*>          Diagonal of the block diagonal matrix D and factors U or L
72*>          as computed by SSYTRF_RK and SSYTRF_BK:
73*>            a) ONLY diagonal elements of the symmetric block diagonal
74*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
75*>               (superdiagonal (or subdiagonal) elements of D
76*>                should be provided on entry in array E), and
77*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
78*>               If UPLO = 'L': factor L in the subdiagonal part of A.
79*> \endverbatim
80*>
81*> \param[in] LDAFAC
82*> \verbatim
83*>          LDAFAC is INTEGER
84*>          The leading dimension of the array AFAC.
85*>          LDAFAC >= max(1,N).
86*> \endverbatim
87*>
88*> \param[in] E
89*> \verbatim
90*>          E is DOUBLE PRECISION array, dimension (N)
91*>          On entry, contains the superdiagonal (or subdiagonal)
92*>          elements of the symmetric block diagonal matrix D
93*>          with 1-by-1 or 2-by-2 diagonal blocks, where
94*>          If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
95*>          If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
96*> \endverbatim
97*>
98*> \param[in] IPIV
99*> \verbatim
100*>          IPIV is INTEGER array, dimension (N)
101*>          The pivot indices from SSYTRF_RK (or SSYTRF_BK).
102*> \endverbatim
103*>
104*> \param[out] C
105*> \verbatim
106*>          C is DOUBLE PRECISION array, dimension (LDC,N)
107*> \endverbatim
108*>
109*> \param[in] LDC
110*> \verbatim
111*>          LDC is INTEGER
112*>          The leading dimension of the array C.  LDC >= max(1,N).
113*> \endverbatim
114*>
115*> \param[out] RWORK
116*> \verbatim
117*>          RWORK is DOUBLE PRECISION array, dimension (N)
118*> \endverbatim
119*>
120*> \param[out] RESID
121*> \verbatim
122*>          RESID is DOUBLE PRECISION
123*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
124*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
125*> \endverbatim
126*
127*  Authors:
128*  ========
129*
130*> \author Univ. of Tennessee
131*> \author Univ. of California Berkeley
132*> \author Univ. of Colorado Denver
133*> \author NAG Ltd.
134*
135*> \ingroup single_lin
136*
137*  =====================================================================
138      SUBROUTINE SSYT01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
139     $                     LDC, RWORK, RESID )
140*
141*  -- LAPACK test routine --
142*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
143*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
144*
145*     .. Scalar Arguments ..
146      CHARACTER          UPLO
147      INTEGER            LDA, LDAFAC, LDC, N
148      REAL               RESID
149*     ..
150*     .. Array Arguments ..
151      INTEGER            IPIV( * )
152      REAL               A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
153     $                   E( * ), RWORK( * )
154*     ..
155*
156*  =====================================================================
157*
158*     .. Parameters ..
159      REAL               ZERO, ONE
160      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
161*     ..
162*     .. Local Scalars ..
163      INTEGER            I, INFO, J
164      REAL               ANORM, EPS
165*     ..
166*     .. External Functions ..
167      LOGICAL            LSAME
168      REAL               SLAMCH, SLANSY
169      EXTERNAL           LSAME, SLAMCH, SLANSY
170*     ..
171*     .. External Subroutines ..
172      EXTERNAL           SLASET, SLAVSY_ROOK, SSYCONVF_ROOK
173*     ..
174*     .. Intrinsic Functions ..
175      INTRINSIC          REAL
176*     ..
177*     .. Executable Statements ..
178*
179*     Quick exit if N = 0.
180*
181      IF( N.LE.0 ) THEN
182         RESID = ZERO
183         RETURN
184      END IF
185*
186*     a) Revert to multiplyers of L
187*
188      CALL SSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
189*
190*     1) Determine EPS and the norm of A.
191*
192      EPS = SLAMCH( 'Epsilon' )
193      ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
194*
195*     2) Initialize C to the identity matrix.
196*
197      CALL SLASET( 'Full', N, N, ZERO, ONE, C, LDC )
198*
199*     3) Call SLAVSY_ROOK to form the product D * U' (or D * L' ).
200*
201      CALL SLAVSY_ROOK( UPLO, 'Transpose', 'Non-unit', N, N, AFAC,
202     $                  LDAFAC, IPIV, C, LDC, INFO )
203*
204*     4) Call SLAVSY_ROOK again to multiply by U (or L ).
205*
206      CALL SLAVSY_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
207     $                  LDAFAC, IPIV, C, LDC, INFO )
208*
209*     5) Compute the difference  C - A.
210*
211      IF( LSAME( UPLO, 'U' ) ) THEN
212         DO J = 1, N
213            DO I = 1, J
214               C( I, J ) = C( I, J ) - A( I, J )
215            END DO
216         END DO
217      ELSE
218         DO J = 1, N
219            DO I = J, N
220               C( I, J ) = C( I, J ) - A( I, J )
221            END DO
222         END DO
223      END IF
224*
225*     6) Compute norm( C - A ) / ( N * norm(A) * EPS )
226*
227      RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK )
228*
229      IF( ANORM.LE.ZERO ) THEN
230         IF( RESID.NE.ZERO )
231     $      RESID = ONE / EPS
232      ELSE
233         RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
234      END IF
235
236*
237*     b) Convert to factor of L (or U)
238*
239      CALL SSYCONVF_ROOK( UPLO, 'C', N, AFAC, LDAFAC, E, IPIV, INFO )
240*
241      RETURN
242*
243*     End of SSYT01_3
244*
245      END
246