1*> \brief \b ZGET01
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE ZGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
12*                          RESID )
13*
14*       .. Scalar Arguments ..
15*       INTEGER            LDA, LDAFAC, M, N
16*       DOUBLE PRECISION   RESID
17*       ..
18*       .. Array Arguments ..
19*       INTEGER            IPIV( * )
20*       DOUBLE PRECISION   RWORK( * )
21*       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
22*       ..
23*
24*
25*> \par Purpose:
26*  =============
27*>
28*> \verbatim
29*>
30*> ZGET01 reconstructs a matrix A from its L*U factorization and
31*> computes the residual
32*>    norm(L*U - A) / ( N * norm(A) * EPS ),
33*> where EPS is the machine epsilon.
34*> \endverbatim
35*
36*  Arguments:
37*  ==========
38*
39*> \param[in] M
40*> \verbatim
41*>          M is INTEGER
42*>          The number of rows of the matrix A.  M >= 0.
43*> \endverbatim
44*>
45*> \param[in] N
46*> \verbatim
47*>          N is INTEGER
48*>          The number of columns of the matrix A.  N >= 0.
49*> \endverbatim
50*>
51*> \param[in] A
52*> \verbatim
53*>          A is COMPLEX*16 array, dimension (LDA,N)
54*>          The original M x N matrix A.
55*> \endverbatim
56*>
57*> \param[in] LDA
58*> \verbatim
59*>          LDA is INTEGER
60*>          The leading dimension of the array A.  LDA >= max(1,M).
61*> \endverbatim
62*>
63*> \param[in,out] AFAC
64*> \verbatim
65*>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
66*>          The factored form of the matrix A.  AFAC contains the factors
67*>          L and U from the L*U factorization as computed by ZGETRF.
68*>          Overwritten with the reconstructed matrix, and then with the
69*>          difference L*U - A.
70*> \endverbatim
71*>
72*> \param[in] LDAFAC
73*> \verbatim
74*>          LDAFAC is INTEGER
75*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,M).
76*> \endverbatim
77*>
78*> \param[in] IPIV
79*> \verbatim
80*>          IPIV is INTEGER array, dimension (N)
81*>          The pivot indices from ZGETRF.
82*> \endverbatim
83*>
84*> \param[out] RWORK
85*> \verbatim
86*>          RWORK is DOUBLE PRECISION array, dimension (M)
87*> \endverbatim
88*>
89*> \param[out] RESID
90*> \verbatim
91*>          RESID is DOUBLE PRECISION
92*>          norm(L*U - A) / ( N * norm(A) * EPS )
93*> \endverbatim
94*
95*  Authors:
96*  ========
97*
98*> \author Univ. of Tennessee
99*> \author Univ. of California Berkeley
100*> \author Univ. of Colorado Denver
101*> \author NAG Ltd.
102*
103*> \ingroup complex16_lin
104*
105*  =====================================================================
106      SUBROUTINE ZGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
107     $                   RESID )
108*
109*  -- LAPACK test routine --
110*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
111*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112*
113*     .. Scalar Arguments ..
114      INTEGER            LDA, LDAFAC, M, N
115      DOUBLE PRECISION   RESID
116*     ..
117*     .. Array Arguments ..
118      INTEGER            IPIV( * )
119      DOUBLE PRECISION   RWORK( * )
120      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
121*     ..
122*
123*  =====================================================================
124*
125*     .. Parameters ..
126      DOUBLE PRECISION   ZERO, ONE
127      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
128      COMPLEX*16         CONE
129      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
130*     ..
131*     .. Local Scalars ..
132      INTEGER            I, J, K
133      DOUBLE PRECISION   ANORM, EPS
134      COMPLEX*16         T
135*     ..
136*     .. External Functions ..
137      DOUBLE PRECISION   DLAMCH, ZLANGE
138      COMPLEX*16         ZDOTU
139      EXTERNAL           DLAMCH, ZLANGE, ZDOTU
140*     ..
141*     .. External Subroutines ..
142      EXTERNAL           ZGEMV, ZLASWP, ZSCAL, ZTRMV
143*     ..
144*     .. Intrinsic Functions ..
145      INTRINSIC          DBLE, MIN
146*     ..
147*     .. Executable Statements ..
148*
149*     Quick exit if M = 0 or N = 0.
150*
151      IF( M.LE.0 .OR. N.LE.0 ) THEN
152         RESID = ZERO
153         RETURN
154      END IF
155*
156*     Determine EPS and the norm of A.
157*
158      EPS = DLAMCH( 'Epsilon' )
159      ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
160*
161*     Compute the product L*U and overwrite AFAC with the result.
162*     A column at a time of the product is obtained, starting with
163*     column N.
164*
165      DO 10 K = N, 1, -1
166         IF( K.GT.M ) THEN
167            CALL ZTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC,
168     $                  LDAFAC, AFAC( 1, K ), 1 )
169         ELSE
170*
171*           Compute elements (K+1:M,K)
172*
173            T = AFAC( K, K )
174            IF( K+1.LE.M ) THEN
175               CALL ZSCAL( M-K, T, AFAC( K+1, K ), 1 )
176               CALL ZGEMV( 'No transpose', M-K, K-1, CONE,
177     $                     AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1,
178     $                     CONE, AFAC( K+1, K ), 1 )
179            END IF
180*
181*           Compute the (K,K) element
182*
183            AFAC( K, K ) = T + ZDOTU( K-1, AFAC( K, 1 ), LDAFAC,
184     $                     AFAC( 1, K ), 1 )
185*
186*           Compute elements (1:K-1,K)
187*
188            CALL ZTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC,
189     $                  LDAFAC, AFAC( 1, K ), 1 )
190         END IF
191   10 CONTINUE
192      CALL ZLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 )
193*
194*     Compute the difference  L*U - A  and store in AFAC.
195*
196      DO 30 J = 1, N
197         DO 20 I = 1, M
198            AFAC( I, J ) = AFAC( I, J ) - A( I, J )
199   20    CONTINUE
200   30 CONTINUE
201*
202*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
203*
204      RESID = ZLANGE( '1', M, N, AFAC, LDAFAC, RWORK )
205*
206      IF( ANORM.LE.ZERO ) THEN
207         IF( RESID.NE.ZERO )
208     $      RESID = ONE / EPS
209      ELSE
210         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
211      END IF
212*
213      RETURN
214*
215*     End of ZGET01
216*
217      END
218