1*> \brief \b ZLQT01
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE ZLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
12*                          RWORK, RESULT )
13*
14*       .. Scalar Arguments ..
15*       INTEGER            LDA, LWORK, M, N
16*       ..
17*       .. Array Arguments ..
18*       DOUBLE PRECISION   RESULT( * ), RWORK( * )
19*       COMPLEX*16         A( LDA, * ), AF( LDA, * ), L( LDA, * ),
20*      $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
21*       ..
22*
23*
24*> \par Purpose:
25*  =============
26*>
27*> \verbatim
28*>
29*> ZLQT01 tests ZGELQF, which computes the LQ factorization of an m-by-n
30*> matrix A, and partially tests ZUNGLQ which forms the n-by-n
31*> orthogonal matrix Q.
32*>
33*> ZLQT01 compares L with A*Q', and checks that Q is orthogonal.
34*> \endverbatim
35*
36*  Arguments:
37*  ==========
38*
39*> \param[in] M
40*> \verbatim
41*>          M is INTEGER
42*>          The number of rows of the matrix A.  M >= 0.
43*> \endverbatim
44*>
45*> \param[in] N
46*> \verbatim
47*>          N is INTEGER
48*>          The number of columns of the matrix A.  N >= 0.
49*> \endverbatim
50*>
51*> \param[in] A
52*> \verbatim
53*>          A is COMPLEX*16 array, dimension (LDA,N)
54*>          The m-by-n matrix A.
55*> \endverbatim
56*>
57*> \param[out] AF
58*> \verbatim
59*>          AF is COMPLEX*16 array, dimension (LDA,N)
60*>          Details of the LQ factorization of A, as returned by ZGELQF.
61*>          See ZGELQF for further details.
62*> \endverbatim
63*>
64*> \param[out] Q
65*> \verbatim
66*>          Q is COMPLEX*16 array, dimension (LDA,N)
67*>          The n-by-n orthogonal matrix Q.
68*> \endverbatim
69*>
70*> \param[out] L
71*> \verbatim
72*>          L is COMPLEX*16 array, dimension (LDA,max(M,N))
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*>          LDA is INTEGER
78*>          The leading dimension of the arrays A, AF, Q and L.
79*>          LDA >= max(M,N).
80*> \endverbatim
81*>
82*> \param[out] TAU
83*> \verbatim
84*>          TAU is COMPLEX*16 array, dimension (min(M,N))
85*>          The scalar factors of the elementary reflectors, as returned
86*>          by ZGELQF.
87*> \endverbatim
88*>
89*> \param[out] WORK
90*> \verbatim
91*>          WORK is COMPLEX*16 array, dimension (LWORK)
92*> \endverbatim
93*>
94*> \param[in] LWORK
95*> \verbatim
96*>          LWORK is INTEGER
97*>          The dimension of the array WORK.
98*> \endverbatim
99*>
100*> \param[out] RWORK
101*> \verbatim
102*>          RWORK is DOUBLE PRECISION array, dimension (max(M,N))
103*> \endverbatim
104*>
105*> \param[out] RESULT
106*> \verbatim
107*>          RESULT is DOUBLE PRECISION array, dimension (2)
108*>          The test ratios:
109*>          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
110*>          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
111*> \endverbatim
112*
113*  Authors:
114*  ========
115*
116*> \author Univ. of Tennessee
117*> \author Univ. of California Berkeley
118*> \author Univ. of Colorado Denver
119*> \author NAG Ltd.
120*
121*> \ingroup complex16_lin
122*
123*  =====================================================================
124      SUBROUTINE ZLQT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
125     $                   RWORK, RESULT )
126*
127*  -- LAPACK test routine --
128*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
129*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130*
131*     .. Scalar Arguments ..
132      INTEGER            LDA, LWORK, M, N
133*     ..
134*     .. Array Arguments ..
135      DOUBLE PRECISION   RESULT( * ), RWORK( * )
136      COMPLEX*16         A( LDA, * ), AF( LDA, * ), L( LDA, * ),
137     $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
138*     ..
139*
140*  =====================================================================
141*
142*     .. Parameters ..
143      DOUBLE PRECISION   ZERO, ONE
144      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
145      COMPLEX*16         ROGUE
146      PARAMETER          ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
147*     ..
148*     .. Local Scalars ..
149      INTEGER            INFO, MINMN
150      DOUBLE PRECISION   ANORM, EPS, RESID
151*     ..
152*     .. External Functions ..
153      DOUBLE PRECISION   DLAMCH, ZLANGE, ZLANSY
154      EXTERNAL           DLAMCH, ZLANGE, ZLANSY
155*     ..
156*     .. External Subroutines ..
157      EXTERNAL           ZGELQF, ZGEMM, ZHERK, ZLACPY, ZLASET, ZUNGLQ
158*     ..
159*     .. Intrinsic Functions ..
160      INTRINSIC          DBLE, DCMPLX, MAX, MIN
161*     ..
162*     .. Scalars in Common ..
163      CHARACTER*32       SRNAMT
164*     ..
165*     .. Common blocks ..
166      COMMON             / SRNAMC / SRNAMT
167*     ..
168*     .. Executable Statements ..
169*
170      MINMN = MIN( M, N )
171      EPS = DLAMCH( 'Epsilon' )
172*
173*     Copy the matrix A to the array AF.
174*
175      CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
176*
177*     Factorize the matrix A in the array AF.
178*
179      SRNAMT = 'ZGELQF'
180      CALL ZGELQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
181*
182*     Copy details of Q
183*
184      CALL ZLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
185      IF( N.GT.1 )
186     $   CALL ZLACPY( 'Upper', M, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
187*
188*     Generate the n-by-n matrix Q
189*
190      SRNAMT = 'ZUNGLQ'
191      CALL ZUNGLQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
192*
193*     Copy L
194*
195      CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), L,
196     $             LDA )
197      CALL ZLACPY( 'Lower', M, N, AF, LDA, L, LDA )
198*
199*     Compute L - A*Q'
200*
201      CALL ZGEMM( 'No transpose', 'Conjugate transpose', M, N, N,
202     $            DCMPLX( -ONE ), A, LDA, Q, LDA, DCMPLX( ONE ), L,
203     $            LDA )
204*
205*     Compute norm( L - Q'*A ) / ( N * norm(A) * EPS ) .
206*
207      ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
208      RESID = ZLANGE( '1', M, N, L, LDA, RWORK )
209      IF( ANORM.GT.ZERO ) THEN
210         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
211      ELSE
212         RESULT( 1 ) = ZERO
213      END IF
214*
215*     Compute I - Q*Q'
216*
217      CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ), DCMPLX( ONE ), L, LDA )
218      CALL ZHERK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, L,
219     $            LDA )
220*
221*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
222*
223      RESID = ZLANSY( '1', 'Upper', N, L, LDA, RWORK )
224*
225      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
226*
227      RETURN
228*
229*     End of ZLQT01
230*
231      END
232