1*> \brief \b ZQPT01 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8* Definition: 9* =========== 10* 11* DOUBLE PRECISION FUNCTION ZQPT01( M, N, K, A, AF, LDA, TAU, JPVT, 12* WORK, LWORK ) 13* 14* .. Scalar Arguments .. 15* INTEGER K, LDA, LWORK, M, N 16* .. 17* .. Array Arguments .. 18* INTEGER JPVT( * ) 19* COMPLEX*16 A( LDA, * ), AF( LDA, * ), TAU( * ), 20* $ WORK( LWORK ) 21* .. 22* 23* 24*> \par Purpose: 25* ============= 26*> 27*> \verbatim 28*> 29*> ZQPT01 tests the QR-factorization with pivoting of a matrix A. The 30*> array AF contains the (possibly partial) QR-factorization of A, where 31*> the upper triangle of AF(1:k,1:k) is a partial triangular factor, 32*> the entries below the diagonal in the first k columns are the 33*> Householder vectors, and the rest of AF contains a partially updated 34*> matrix. 35*> 36*> This function returns ||A*P - Q*R||/(||norm(A)||*eps*M) 37*> \endverbatim 38* 39* Arguments: 40* ========== 41* 42*> \param[in] M 43*> \verbatim 44*> M is INTEGER 45*> The number of rows of the matrices A and AF. 46*> \endverbatim 47*> 48*> \param[in] N 49*> \verbatim 50*> N is INTEGER 51*> The number of columns of the matrices A and AF. 52*> \endverbatim 53*> 54*> \param[in] K 55*> \verbatim 56*> K is INTEGER 57*> The number of columns of AF that have been reduced 58*> to upper triangular form. 59*> \endverbatim 60*> 61*> \param[in] A 62*> \verbatim 63*> A is COMPLEX*16 array, dimension (LDA, N) 64*> The original matrix A. 65*> \endverbatim 66*> 67*> \param[in] AF 68*> \verbatim 69*> AF is COMPLEX*16 array, dimension (LDA,N) 70*> The (possibly partial) output of ZGEQPF. The upper triangle 71*> of AF(1:k,1:k) is a partial triangular factor, the entries 72*> below the diagonal in the first k columns are the Householder 73*> vectors, and the rest of AF contains a partially updated 74*> matrix. 75*> \endverbatim 76*> 77*> \param[in] LDA 78*> \verbatim 79*> LDA is INTEGER 80*> The leading dimension of the arrays A and AF. 81*> \endverbatim 82*> 83*> \param[in] TAU 84*> \verbatim 85*> TAU is COMPLEX*16 array, dimension (K) 86*> Details of the Householder transformations as returned by 87*> ZGEQPF. 88*> \endverbatim 89*> 90*> \param[in] JPVT 91*> \verbatim 92*> JPVT is INTEGER array, dimension (N) 93*> Pivot information as returned by ZGEQPF. 94*> \endverbatim 95*> 96*> \param[out] WORK 97*> \verbatim 98*> WORK is COMPLEX*16 array, dimension (LWORK) 99*> \endverbatim 100*> 101*> \param[in] LWORK 102*> \verbatim 103*> LWORK is INTEGER 104*> The length of the array WORK. LWORK >= M*N+N. 105*> \endverbatim 106* 107* Authors: 108* ======== 109* 110*> \author Univ. of Tennessee 111*> \author Univ. of California Berkeley 112*> \author Univ. of Colorado Denver 113*> \author NAG Ltd. 114* 115*> \ingroup complex16_lin 116* 117* ===================================================================== 118 DOUBLE PRECISION FUNCTION ZQPT01( M, N, K, A, AF, LDA, TAU, JPVT, 119 $ WORK, LWORK ) 120* 121* -- LAPACK test routine -- 122* -- LAPACK is a software package provided by Univ. of Tennessee, -- 123* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 124* 125* .. Scalar Arguments .. 126 INTEGER K, LDA, LWORK, M, N 127* .. 128* .. Array Arguments .. 129 INTEGER JPVT( * ) 130 COMPLEX*16 A( LDA, * ), AF( LDA, * ), TAU( * ), 131 $ WORK( LWORK ) 132* .. 133* 134* ===================================================================== 135* 136* .. Parameters .. 137 DOUBLE PRECISION ZERO, ONE 138 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) 139* .. 140* .. Local Scalars .. 141 INTEGER I, INFO, J 142 DOUBLE PRECISION NORMA 143* .. 144* .. Local Arrays .. 145 DOUBLE PRECISION RWORK( 1 ) 146* .. 147* .. External Functions .. 148 DOUBLE PRECISION DLAMCH, ZLANGE 149 EXTERNAL DLAMCH, ZLANGE 150* .. 151* .. External Subroutines .. 152 EXTERNAL XERBLA, ZAXPY, ZCOPY, ZUNMQR 153* .. 154* .. Intrinsic Functions .. 155 INTRINSIC DBLE, DCMPLX, MAX, MIN 156* .. 157* .. Executable Statements .. 158* 159 ZQPT01 = ZERO 160* 161* Test if there is enough workspace 162* 163 IF( LWORK.LT.M*N+N ) THEN 164 CALL XERBLA( 'ZQPT01', 10 ) 165 RETURN 166 END IF 167* 168* Quick return if possible 169* 170 IF( M.LE.0 .OR. N.LE.0 ) 171 $ RETURN 172* 173 NORMA = ZLANGE( 'One-norm', M, N, A, LDA, RWORK ) 174* 175 DO 30 J = 1, K 176 DO 10 I = 1, MIN( J, M ) 177 WORK( ( J-1 )*M+I ) = AF( I, J ) 178 10 CONTINUE 179 DO 20 I = J + 1, M 180 WORK( ( J-1 )*M+I ) = ZERO 181 20 CONTINUE 182 30 CONTINUE 183 DO 40 J = K + 1, N 184 CALL ZCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 ) 185 40 CONTINUE 186* 187 CALL ZUNMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK, 188 $ M, WORK( M*N+1 ), LWORK-M*N, INFO ) 189* 190 DO 50 J = 1, N 191* 192* Compare i-th column of QR and jpvt(i)-th column of A 193* 194 CALL ZAXPY( M, DCMPLX( -ONE ), A( 1, JPVT( J ) ), 1, 195 $ WORK( ( J-1 )*M+1 ), 1 ) 196 50 CONTINUE 197* 198 ZQPT01 = ZLANGE( 'One-norm', M, N, WORK, M, RWORK ) / 199 $ ( DBLE( MAX( M, N ) )*DLAMCH( 'Epsilon' ) ) 200 IF( NORMA.NE.ZERO ) 201 $ ZQPT01 = ZQPT01 / NORMA 202* 203 RETURN 204* 205* End of ZQPT01 206* 207 END 208