1*> \brief \b CPPT01
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE CPPT01( UPLO, N, A, AFAC, RWORK, RESID )
12*
13*       .. Scalar Arguments ..
14*       CHARACTER          UPLO
15*       INTEGER            N
16*       REAL               RESID
17*       ..
18*       .. Array Arguments ..
19*       REAL               RWORK( * )
20*       COMPLEX            A( * ), AFAC( * )
21*       ..
22*
23*
24*> \par Purpose:
25*  =============
26*>
27*> \verbatim
28*>
29*> CPPT01 reconstructs a Hermitian positive definite packed matrix A
30*> from its L*L' or U'*U factorization and computes the residual
31*>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
32*>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
33*> where EPS is the machine epsilon, L' is the conjugate transpose of
34*> L, and U' is the conjugate transpose of U.
35*> \endverbatim
36*
37*  Arguments:
38*  ==========
39*
40*> \param[in] UPLO
41*> \verbatim
42*>          UPLO is CHARACTER*1
43*>          Specifies whether the upper or lower triangular part of the
44*>          Hermitian matrix A is stored:
45*>          = 'U':  Upper triangular
46*>          = 'L':  Lower triangular
47*> \endverbatim
48*>
49*> \param[in] N
50*> \verbatim
51*>          N is INTEGER
52*>          The number of rows and columns of the matrix A.  N >= 0.
53*> \endverbatim
54*>
55*> \param[in] A
56*> \verbatim
57*>          A is COMPLEX array, dimension (N*(N+1)/2)
58*>          The original Hermitian matrix A, stored as a packed
59*>          triangular matrix.
60*> \endverbatim
61*>
62*> \param[in,out] AFAC
63*> \verbatim
64*>          AFAC is COMPLEX array, dimension (N*(N+1)/2)
65*>          On entry, the factor L or U from the L*L' or U'*U
66*>          factorization of A, stored as a packed triangular matrix.
67*>          Overwritten with the reconstructed matrix, and then with the
68*>          difference L*L' - A (or U'*U - A).
69*> \endverbatim
70*>
71*> \param[out] RWORK
72*> \verbatim
73*>          RWORK is REAL array, dimension (N)
74*> \endverbatim
75*>
76*> \param[out] RESID
77*> \verbatim
78*>          RESID is REAL
79*>          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
80*>          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
81*> \endverbatim
82*
83*  Authors:
84*  ========
85*
86*> \author Univ. of Tennessee
87*> \author Univ. of California Berkeley
88*> \author Univ. of Colorado Denver
89*> \author NAG Ltd.
90*
91*> \date November 2011
92*
93*> \ingroup complex_lin
94*
95*  =====================================================================
96      SUBROUTINE CPPT01( UPLO, N, A, AFAC, RWORK, RESID )
97*
98*  -- LAPACK test routine (version 3.4.0) --
99*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
100*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
101*     November 2011
102*
103*     .. Scalar Arguments ..
104      CHARACTER          UPLO
105      INTEGER            N
106      REAL               RESID
107*     ..
108*     .. Array Arguments ..
109      REAL               RWORK( * )
110      COMPLEX            A( * ), AFAC( * )
111*     ..
112*
113*  =====================================================================
114*
115*     .. Parameters ..
116      REAL               ZERO, ONE
117      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
118*     ..
119*     .. Local Scalars ..
120      INTEGER            I, K, KC
121      REAL               ANORM, EPS, TR
122      COMPLEX            TC
123*     ..
124*     .. External Functions ..
125      LOGICAL            LSAME
126      REAL               CLANHP, SLAMCH
127      COMPLEX            CDOTC
128      EXTERNAL           LSAME, CLANHP, SLAMCH, CDOTC
129*     ..
130*     .. External Subroutines ..
131      EXTERNAL           CHPR, CSCAL, CTPMV
132*     ..
133*     .. Intrinsic Functions ..
134      INTRINSIC          AIMAG, REAL
135*     ..
136*     .. Executable Statements ..
137*
138*     Quick exit if N = 0
139*
140      IF( N.LE.0 ) THEN
141         RESID = ZERO
142         RETURN
143      END IF
144*
145*     Exit with RESID = 1/EPS if ANORM = 0.
146*
147      EPS = SLAMCH( 'Epsilon' )
148      ANORM = CLANHP( '1', UPLO, N, A, RWORK )
149      IF( ANORM.LE.ZERO ) THEN
150         RESID = ONE / EPS
151         RETURN
152      END IF
153*
154*     Check the imaginary parts of the diagonal elements and return with
155*     an error code if any are nonzero.
156*
157      KC = 1
158      IF( LSAME( UPLO, 'U' ) ) THEN
159         DO 10 K = 1, N
160            IF( AIMAG( AFAC( KC ) ).NE.ZERO ) THEN
161               RESID = ONE / EPS
162               RETURN
163            END IF
164            KC = KC + K + 1
165   10    CONTINUE
166      ELSE
167         DO 20 K = 1, N
168            IF( AIMAG( AFAC( KC ) ).NE.ZERO ) THEN
169               RESID = ONE / EPS
170               RETURN
171            END IF
172            KC = KC + N - K + 1
173   20    CONTINUE
174      END IF
175*
176*     Compute the product U'*U, overwriting U.
177*
178      IF( LSAME( UPLO, 'U' ) ) THEN
179         KC = ( N*( N-1 ) ) / 2 + 1
180         DO 30 K = N, 1, -1
181*
182*           Compute the (K,K) element of the result.
183*
184            TR = CDOTC( K, AFAC( KC ), 1, AFAC( KC ), 1 )
185            AFAC( KC+K-1 ) = TR
186*
187*           Compute the rest of column K.
188*
189            IF( K.GT.1 ) THEN
190               CALL CTPMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
191     $                     AFAC( KC ), 1 )
192               KC = KC - ( K-1 )
193            END IF
194   30    CONTINUE
195*
196*        Compute the difference  L*L' - A
197*
198         KC = 1
199         DO 50 K = 1, N
200            DO 40 I = 1, K - 1
201               AFAC( KC+I-1 ) = AFAC( KC+I-1 ) - A( KC+I-1 )
202   40       CONTINUE
203            AFAC( KC+K-1 ) = AFAC( KC+K-1 ) - REAL( A( KC+K-1 ) )
204            KC = KC + K
205   50    CONTINUE
206*
207*     Compute the product L*L', overwriting L.
208*
209      ELSE
210         KC = ( N*( N+1 ) ) / 2
211         DO 60 K = N, 1, -1
212*
213*           Add a multiple of column K of the factor L to each of
214*           columns K+1 through N.
215*
216            IF( K.LT.N )
217     $         CALL CHPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1,
218     $                    AFAC( KC+N-K+1 ) )
219*
220*           Scale column K by the diagonal element.
221*
222            TC = AFAC( KC )
223            CALL CSCAL( N-K+1, TC, AFAC( KC ), 1 )
224*
225            KC = KC - ( N-K+2 )
226   60    CONTINUE
227*
228*        Compute the difference  U'*U - A
229*
230         KC = 1
231         DO 80 K = 1, N
232            AFAC( KC ) = AFAC( KC ) - REAL( A( KC ) )
233            DO 70 I = K + 1, N
234               AFAC( KC+I-K ) = AFAC( KC+I-K ) - A( KC+I-K )
235   70       CONTINUE
236            KC = KC + N - K + 1
237   80    CONTINUE
238      END IF
239*
240*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
241*
242      RESID = CLANHP( '1', UPLO, N, AFAC, RWORK )
243*
244      RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
245*
246      RETURN
247*
248*     End of CPPT01
249*
250      END
251