1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #define EIGEN_NO_STATIC_ASSERT // otherwise we fail at compile time on unused paths
11 #include "main.h"
12 
13 template<typename MatrixType, typename Index, typename Scalar>
14 typename Eigen::internal::enable_if<!NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
block_real_only(const MatrixType & m1,Index r1,Index r2,Index c1,Index c2,const Scalar & s1)15 block_real_only(const MatrixType &m1, Index r1, Index r2, Index c1, Index c2, const Scalar& s1) {
16   // check cwise-Functions:
17   VERIFY_IS_APPROX(m1.row(r1).cwiseMax(s1), m1.cwiseMax(s1).row(r1));
18   VERIFY_IS_APPROX(m1.col(c1).cwiseMin(s1), m1.cwiseMin(s1).col(c1));
19 
20   VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMin(s1), m1.cwiseMin(s1).block(r1,c1,r2-r1+1,c2-c1+1));
21   VERIFY_IS_APPROX(m1.block(r1,c1,r2-r1+1,c2-c1+1).cwiseMax(s1), m1.cwiseMax(s1).block(r1,c1,r2-r1+1,c2-c1+1));
22 
23   return Scalar(0);
24 }
25 
26 template<typename MatrixType, typename Index, typename Scalar>
27 typename Eigen::internal::enable_if<NumTraits<typename MatrixType::Scalar>::IsComplex,typename MatrixType::Scalar>::type
block_real_only(const MatrixType &,Index,Index,Index,Index,const Scalar &)28 block_real_only(const MatrixType &, Index, Index, Index, Index, const Scalar&) {
29   return Scalar(0);
30 }
31 
32 
block(const MatrixType & m)33 template<typename MatrixType> void block(const MatrixType& m)
34 {
35   typedef typename MatrixType::Index Index;
36   typedef typename MatrixType::Scalar Scalar;
37   typedef typename MatrixType::RealScalar RealScalar;
38   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
39   typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
40   typedef Matrix<Scalar, Dynamic, Dynamic> DynamicMatrixType;
41   typedef Matrix<Scalar, Dynamic, 1> DynamicVectorType;
42 
43   Index rows = m.rows();
44   Index cols = m.cols();
45 
46   MatrixType m1 = MatrixType::Random(rows, cols),
47              m1_copy = m1,
48              m2 = MatrixType::Random(rows, cols),
49              m3(rows, cols),
50              ones = MatrixType::Ones(rows, cols);
51   VectorType v1 = VectorType::Random(rows);
52 
53   Scalar s1 = internal::random<Scalar>();
54 
55   Index r1 = internal::random<Index>(0,rows-1);
56   Index r2 = internal::random<Index>(r1,rows-1);
57   Index c1 = internal::random<Index>(0,cols-1);
58   Index c2 = internal::random<Index>(c1,cols-1);
59 
60   block_real_only(m1, r1, r2, c1, c1, s1);
61 
62   //check row() and col()
63   VERIFY_IS_EQUAL(m1.col(c1).transpose(), m1.transpose().row(c1));
64   //check operator(), both constant and non-constant, on row() and col()
65   m1 = m1_copy;
66   m1.row(r1) += s1 * m1_copy.row(r2);
67   VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + s1 * m1_copy.row(r2));
68   // check nested block xpr on lhs
69   m1.row(r1).row(0) += s1 * m1_copy.row(r2);
70   VERIFY_IS_APPROX(m1.row(r1), m1_copy.row(r1) + Scalar(2) * s1 * m1_copy.row(r2));
71   m1 = m1_copy;
72   m1.col(c1) += s1 * m1_copy.col(c2);
73   VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + s1 * m1_copy.col(c2));
74   m1.col(c1).col(0) += s1 * m1_copy.col(c2);
75   VERIFY_IS_APPROX(m1.col(c1), m1_copy.col(c1) + Scalar(2) * s1 * m1_copy.col(c2));
76 
77 
78   //check block()
79   Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
80 
81   RowVectorType br1(m1.block(r1,0,1,cols));
82   VectorType bc1(m1.block(0,c1,rows,1));
83   VERIFY_IS_EQUAL(b1, m1.block(r1,c1,1,1));
84   VERIFY_IS_EQUAL(m1.row(r1), br1);
85   VERIFY_IS_EQUAL(m1.col(c1), bc1);
86   //check operator(), both constant and non-constant, on block()
87   m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
88   m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
89 
90   enum {
91     BlockRows = 2,
92     BlockCols = 5
93   };
94   if (rows>=5 && cols>=8)
95   {
96     // test fixed block() as lvalue
97     m1.template block<BlockRows,BlockCols>(1,1) *= s1;
98     // test operator() on fixed block() both as constant and non-constant
99     m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
100     // check that fixed block() and block() agree
101     Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
102     VERIFY_IS_EQUAL(b, m1.block(3,3,BlockRows,BlockCols));
103 
104     // same tests with mixed fixed/dynamic size
105     m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols) *= s1;
106     m1.template block<BlockRows,Dynamic>(1,1,BlockRows,BlockCols)(0,3) = m1.template block<2,5>(1,1)(1,2);
107     Matrix<Scalar,Dynamic,Dynamic> b2 = m1.template block<Dynamic,BlockCols>(3,3,2,5);
108     VERIFY_IS_EQUAL(b2, m1.block(3,3,BlockRows,BlockCols));
109   }
110 
111   if (rows>2)
112   {
113     // test sub vectors
114     VERIFY_IS_EQUAL(v1.template head<2>(), v1.block(0,0,2,1));
115     VERIFY_IS_EQUAL(v1.template head<2>(), v1.head(2));
116     VERIFY_IS_EQUAL(v1.template head<2>(), v1.segment(0,2));
117     VERIFY_IS_EQUAL(v1.template head<2>(), v1.template segment<2>(0));
118     Index i = rows-2;
119     VERIFY_IS_EQUAL(v1.template tail<2>(), v1.block(i,0,2,1));
120     VERIFY_IS_EQUAL(v1.template tail<2>(), v1.tail(2));
121     VERIFY_IS_EQUAL(v1.template tail<2>(), v1.segment(i,2));
122     VERIFY_IS_EQUAL(v1.template tail<2>(), v1.template segment<2>(i));
123     i = internal::random<Index>(0,rows-2);
124     VERIFY_IS_EQUAL(v1.segment(i,2), v1.template segment<2>(i));
125   }
126 
127   // stress some basic stuffs with block matrices
128   VERIFY(numext::real(ones.col(c1).sum()) == RealScalar(rows));
129   VERIFY(numext::real(ones.row(r1).sum()) == RealScalar(cols));
130 
131   VERIFY(numext::real(ones.col(c1).dot(ones.col(c2))) == RealScalar(rows));
132   VERIFY(numext::real(ones.row(r1).dot(ones.row(r2))) == RealScalar(cols));
133 
134   // now test some block-inside-of-block.
135 
136   // expressions with direct access
137   VERIFY_IS_EQUAL( (m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , (m1.block(r2,c2,rows-r2,cols-c2)) );
138   VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , (m1.row(r1).segment(c1,c2-c1+1)) );
139   VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , (m1.col(c1).segment(r1,r2-r1+1)) );
140   VERIFY_IS_EQUAL( (m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
141   VERIFY_IS_EQUAL( (m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , (m1.row(r1).segment(c1,c2-c1+1)).transpose() );
142 
143   // expressions without direct access
144   VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2)) , ((m1+m2).block(r2,c2,rows-r2,cols-c2)) );
145   VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).row(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)) );
146   VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).col(0)) , ((m1+m2).col(c1).segment(r1,r2-r1+1)) );
147   VERIFY_IS_EQUAL( ((m1+m2).block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
148   VERIFY_IS_EQUAL( ((m1+m2).transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0)) , ((m1+m2).row(r1).segment(c1,c2-c1+1)).transpose() );
149 
150   // evaluation into plain matrices from expressions with direct access (stress MapBase)
151   DynamicMatrixType dm;
152   DynamicVectorType dv;
153   dm.setZero();
154   dm = m1.block(r1,c1,rows-r1,cols-c1).block(r2-r1,c2-c1,rows-r2,cols-c2);
155   VERIFY_IS_EQUAL(dm, (m1.block(r2,c2,rows-r2,cols-c2)));
156   dm.setZero();
157   dv.setZero();
158   dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).row(0).transpose();
159   dv = m1.row(r1).segment(c1,c2-c1+1);
160   VERIFY_IS_EQUAL(dv, dm);
161   dm.setZero();
162   dv.setZero();
163   dm = m1.col(c1).segment(r1,r2-r1+1);
164   dv = m1.block(r1,c1,r2-r1+1,c2-c1+1).col(0);
165   VERIFY_IS_EQUAL(dv, dm);
166   dm.setZero();
167   dv.setZero();
168   dm = m1.block(r1,c1,r2-r1+1,c2-c1+1).transpose().col(0);
169   dv = m1.row(r1).segment(c1,c2-c1+1);
170   VERIFY_IS_EQUAL(dv, dm);
171   dm.setZero();
172   dv.setZero();
173   dm = m1.row(r1).segment(c1,c2-c1+1).transpose();
174   dv = m1.transpose().block(c1,r1,c2-c1+1,r2-r1+1).col(0);
175   VERIFY_IS_EQUAL(dv, dm);
176 }
177 
178 
179 template<typename MatrixType>
compare_using_data_and_stride(const MatrixType & m)180 void compare_using_data_and_stride(const MatrixType& m)
181 {
182   typedef typename MatrixType::Index Index;
183   Index rows = m.rows();
184   Index cols = m.cols();
185   Index size = m.size();
186   Index innerStride = m.innerStride();
187   Index outerStride = m.outerStride();
188   Index rowStride = m.rowStride();
189   Index colStride = m.colStride();
190   const typename MatrixType::Scalar* data = m.data();
191 
192   for(int j=0;j<cols;++j)
193     for(int i=0;i<rows;++i)
194       VERIFY(m.coeff(i,j) == data[i*rowStride + j*colStride]);
195 
196   if(!MatrixType::IsVectorAtCompileTime)
197   {
198     for(int j=0;j<cols;++j)
199       for(int i=0;i<rows;++i)
200         VERIFY(m.coeff(i,j) == data[(MatrixType::Flags&RowMajorBit)
201                                      ? i*outerStride + j*innerStride
202                                      : j*outerStride + i*innerStride]);
203   }
204 
205   if(MatrixType::IsVectorAtCompileTime)
206   {
207     VERIFY(innerStride == int((&m.coeff(1))-(&m.coeff(0))));
208     for (int i=0;i<size;++i)
209       VERIFY(m.coeff(i) == data[i*innerStride]);
210   }
211 }
212 
213 template<typename MatrixType>
data_and_stride(const MatrixType & m)214 void data_and_stride(const MatrixType& m)
215 {
216   typedef typename MatrixType::Index Index;
217   Index rows = m.rows();
218   Index cols = m.cols();
219 
220   Index r1 = internal::random<Index>(0,rows-1);
221   Index r2 = internal::random<Index>(r1,rows-1);
222   Index c1 = internal::random<Index>(0,cols-1);
223   Index c2 = internal::random<Index>(c1,cols-1);
224 
225   MatrixType m1 = MatrixType::Random(rows, cols);
226   compare_using_data_and_stride(m1.block(r1, c1, r2-r1+1, c2-c1+1));
227   compare_using_data_and_stride(m1.transpose().block(c1, r1, c2-c1+1, r2-r1+1));
228   compare_using_data_and_stride(m1.row(r1));
229   compare_using_data_and_stride(m1.col(c1));
230   compare_using_data_and_stride(m1.row(r1).transpose());
231   compare_using_data_and_stride(m1.col(c1).transpose());
232 }
233 
test_block()234 void test_block()
235 {
236   for(int i = 0; i < g_repeat; i++) {
237     CALL_SUBTEST_1( block(Matrix<float, 1, 1>()) );
238     CALL_SUBTEST_2( block(Matrix4d()) );
239     CALL_SUBTEST_3( block(MatrixXcf(3, 3)) );
240     CALL_SUBTEST_4( block(MatrixXi(8, 12)) );
241     CALL_SUBTEST_5( block(MatrixXcd(20, 20)) );
242     CALL_SUBTEST_6( block(MatrixXf(20, 20)) );
243 
244     CALL_SUBTEST_8( block(Matrix<float,Dynamic,4>(3, 4)) );
245 
246 #ifndef EIGEN_DEFAULT_TO_ROW_MAJOR
247     CALL_SUBTEST_6( data_and_stride(MatrixXf(internal::random(5,50), internal::random(5,50))) );
248     CALL_SUBTEST_7( data_and_stride(Matrix<int,Dynamic,Dynamic,RowMajor>(internal::random(5,50), internal::random(5,50))) );
249 #endif
250   }
251 }
252