1 /* zlib.h -- interface of the 'zlib' general purpose compression library
2   version 1.2.11, January 15th, 2017
3 
4   Copyright (C) 1995-2017 Jean-loup Gailly and Mark Adler
5 
6   This software is provided 'as-is', without any express or implied
7   warranty.  In no event will the authors be held liable for any damages
8   arising from the use of this software.
9 
10   Permission is granted to anyone to use this software for any purpose,
11   including commercial applications, and to alter it and redistribute it
12   freely, subject to the following restrictions:
13 
14   1. The origin of this software must not be misrepresented; you must not
15      claim that you wrote the original software. If you use this software
16      in a product, an acknowledgment in the product documentation would be
17      appreciated but is not required.
18   2. Altered source versions must be plainly marked as such, and must not be
19      misrepresented as being the original software.
20   3. This notice may not be removed or altered from any source distribution.
21 
22   Jean-loup Gailly        Mark Adler
23   jloup@gzip.org          madler@alumni.caltech.edu
24 
25 
26   The data format used by the zlib library is described by RFCs (Request for
27   Comments) 1950 to 1952 in the files http://tools.ietf.org/html/rfc1950
28   (zlib format), rfc1951 (deflate format) and rfc1952 (gzip format).
29 */
30 
31 /* crc32.c -- compute the CRC-32 of a data stream
32  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
33  * For conditions of distribution and use, see copyright notice in zlib.h
34  *
35  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
36  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
37  * tables for updating the shift register in one step with three exclusive-ors
38  * instead of four steps with four exclusive-ors.  This results in about a
39  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
40  */
41 
42 /**
43 Modified to make it standalone.
44 Dennis Heimbigner
45 UCAR
46 */
47 
48 /* crc32.c -- compute the CRC-32 of a data stream
49  * Copyright (C) 1995-2006, 2010, 2011, 2012, 2016 Mark Adler
50  * For conditions of distribution and use, see copyright notice in zlib.h
51  *
52  * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster
53  * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing
54  * tables for updating the shift register in one step with three exclusive-ors
55  * instead of four steps with four exclusive-ors.  This results in about a
56  * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3.
57  */
58 
59 /* @(#) $Id$ */
60 
61 /*
62   Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore
63   protection on the static variables used to control the first-use generation
64   of the crc tables.  Therefore, if you #define DYNAMIC_CRC_TABLE, you should
65   first call get_crc_table() to initialize the tables before allowing more than
66   one thread to use crc32().
67 
68   DYNAMIC_CRC_TABLE and MAKECRCH can be #defined to write out crc32.h.
69  */
70 
71 /* Prototype for the crc32 function
72 extern unsigned int NC_crc32(unsigned int crc, const unsigned char* buf, unsigned int len);
73 */
74 
75 /* Define some of the macros used here */
76 #define FAR
77 #define ZEXPORT
78 #define local static
79 #define OF(x) x
80 #define uLong unsigned long
81 #define uInt unsigned int
82 #define z_off64_t long long
83 #define z_off_t long
84 #define z_crc_t unsigned long
85 #define z_size_t size_t
86 #define Z_NULL NULL
87 
88 #include <stdlib.h>
89 
90 #ifdef MAKECRCH
91 #  include <stdio.h>
92 #  ifndef DYNAMIC_CRC_TABLE
93 #    define DYNAMIC_CRC_TABLE
94 #  endif /* !DYNAMIC_CRC_TABLE */
95 #endif /* MAKECRCH */
96 
97 
98 /* Definitions for doing the crc four data bytes at a time. */
99 #if !defined(NOBYFOUR) && defined(Z_U4)
100 #  define BYFOUR
101 #endif
102 #ifdef BYFOUR
103    local unsigned long crc32_little OF((unsigned long,
104                         const unsigned char FAR *, z_size_t));
105    local unsigned long crc32_big OF((unsigned long,
106                         const unsigned char FAR *, z_size_t));
107 #  define TBLS 8
108 #else
109 #  define TBLS 1
110 #endif /* BYFOUR */
111 
112 #ifdef DYNAMIC_CRC_TABLE
113 
114 local volatile int crc_table_empty = 1;
115 local z_crc_t FAR crc_table[TBLS][256];
116 local void make_crc_table OF((void));
117 #ifdef MAKECRCH
118    local void write_table OF((FILE *, const z_crc_t FAR *));
119 #endif /* MAKECRCH */
120 /*
121   Generate tables for a byte-wise 32-bit CRC calculation on the polynomial:
122   x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
123 
124   Polynomials over GF(2) are represented in binary, one bit per coefficient,
125   with the lowest powers in the most significant bit.  Then adding polynomials
126   is just exclusive-or, and multiplying a polynomial by x is a right shift by
127   one.  If we call the above polynomial p, and represent a byte as the
128   polynomial q, also with the lowest power in the most significant bit (so the
129   byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
130   where a mod b means the remainder after dividing a by b.
131 
132   This calculation is done using the shift-register method of multiplying and
133   taking the remainder.  The register is initialized to zero, and for each
134   incoming bit, x^32 is added mod p to the register if the bit is a one (where
135   x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
136   x (which is shifting right by one and adding x^32 mod p if the bit shifted
137   out is a one).  We start with the highest power (least significant bit) of
138   q and repeat for all eight bits of q.
139 
140   The first table is simply the CRC of all possible eight bit values.  This is
141   all the information needed to generate CRCs on data a byte at a time for all
142   combinations of CRC register values and incoming bytes.  The remaining tables
143   allow for word-at-a-time CRC calculation for both big-endian and little-
144   endian machines, where a word is four bytes.
145 */
make_crc_table()146 local void make_crc_table()
147 {
148     z_crc_t c;
149     int n, k;
150     z_crc_t poly;                       /* polynomial exclusive-or pattern */
151     /* terms of polynomial defining this crc (except x^32): */
152     static volatile int first = 1;      /* flag to limit concurrent making */
153     static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26};
154 
155     /* See if another task is already doing this (not thread-safe, but better
156        than nothing -- significantly reduces duration of vulnerability in
157        case the advice about DYNAMIC_CRC_TABLE is ignored) */
158     if (first) {
159         first = 0;
160 
161         /* make exclusive-or pattern from polynomial (0xedb88320UL) */
162         poly = 0;
163         for (n = 0; n < (int)(sizeof(p)/sizeof(unsigned char)); n++)
164             poly |= (z_crc_t)1 << (31 - p[n]);
165 
166         /* generate a crc for every 8-bit value */
167         for (n = 0; n < 256; n++) {
168             c = (z_crc_t)n;
169             for (k = 0; k < 8; k++)
170                 c = c & 1 ? poly ^ (c >> 1) : c >> 1;
171             crc_table[0][n] = c;
172         }
173 
174 #ifdef BYFOUR
175         /* generate crc for each value followed by one, two, and three zeros,
176            and then the byte reversal of those as well as the first table */
177         for (n = 0; n < 256; n++) {
178             c = crc_table[0][n];
179             crc_table[4][n] = ZSWAP32(c);
180             for (k = 1; k < 4; k++) {
181                 c = crc_table[0][c & 0xff] ^ (c >> 8);
182                 crc_table[k][n] = c;
183                 crc_table[k + 4][n] = ZSWAP32(c);
184             }
185         }
186 #endif /* BYFOUR */
187 
188         crc_table_empty = 0;
189     }
190     else {      /* not first */
191         /* wait for the other guy to finish (not efficient, but rare) */
192         while (crc_table_empty)
193             ;
194     }
195 
196 #ifdef MAKECRCH
197     /* write out CRC tables to crc32.h */
198     {
199         FILE *out;
200 
201         out = fopen("crc32.h", "w");
202         if (out == NULL) return;
203         fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n");
204         fprintf(out, " * Generated automatically by crc32.c\n */\n\n");
205         fprintf(out, "local const z_crc_t FAR ");
206         fprintf(out, "crc_table[TBLS][256] =\n{\n  {\n");
207         write_table(out, crc_table[0]);
208 #  ifdef BYFOUR
209         fprintf(out, "#ifdef BYFOUR\n");
210         for (k = 1; k < 8; k++) {
211             fprintf(out, "  },\n  {\n");
212             write_table(out, crc_table[k]);
213         }
214         fprintf(out, "#endif\n");
215 #  endif /* BYFOUR */
216         fprintf(out, "  }\n};\n");
217         fclose(out);
218     }
219 #endif /* MAKECRCH */
220 }
221 
222 #ifdef MAKECRCH
write_table(out,table)223 local void write_table(out, table)
224     FILE *out;
225     const z_crc_t FAR *table;
226 {
227     int n;
228 
229     for (n = 0; n < 256; n++)
230         fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : "    ",
231                 (unsigned long)(table[n]),
232                 n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", "));
233 }
234 #endif /* MAKECRCH */
235 
236 #else /* !DYNAMIC_CRC_TABLE */
237 /* ========================================================================
238  * Tables of CRC-32s of all single-byte values, made by make_crc_table().
239  */
240 #include "crc32.h"
241 #endif /* DYNAMIC_CRC_TABLE */
242 
243 /* =========================================================================
244  * This function can be used by asm versions of crc32()
245  */
246 #if 0 /* Unused */
247 local const z_crc_t FAR * ZEXPORT get_crc_table()
248 {
249 #ifdef DYNAMIC_CRC_TABLE
250     if (crc_table_empty)
251         make_crc_table();
252 #endif /* DYNAMIC_CRC_TABLE */
253     return (const z_crc_t FAR *)crc_table;
254 }
255 #endif
256 
257 /* ========================================================================= */
258 #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8)
259 #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1
260 
261 /* ========================================================================= */
crc32_z(crc,buf,len)262 local unsigned long ZEXPORT crc32_z(crc, buf, len)
263     unsigned long crc;
264     const unsigned char FAR *buf;
265     z_size_t len;
266 {
267     if (buf == Z_NULL) return 0UL;
268 
269 #ifdef DYNAMIC_CRC_TABLE
270     if (crc_table_empty)
271         make_crc_table();
272 #endif /* DYNAMIC_CRC_TABLE */
273 
274 #ifdef BYFOUR
275     if (sizeof(void *) == sizeof(ptrdiff_t)) {
276         z_crc_t endian;
277 
278         endian = 1;
279         if (*((unsigned char *)(&endian)))
280             return crc32_little(crc, buf, len);
281         else
282             return crc32_big(crc, buf, len);
283     }
284 #endif /* BYFOUR */
285     crc = crc ^ 0xffffffffUL;
286     while (len >= 8) {
287         DO8;
288         len -= 8;
289     }
290     if (len) do {
291         DO1;
292     } while (--len);
293     return crc ^ 0xffffffffUL;
294 }
295 
296 /* ========================================================================= */
NC_crc32(unsigned int crc,const unsigned char * buf,unsigned int len)297 unsigned int ZEXPORT NC_crc32(unsigned int crc, const unsigned char* buf, unsigned int len)
298 {
299     unsigned long value = (unsigned long)crc;
300     value = crc32_z(value, buf, len);
301     return (unsigned int)(value & 0xFFFFFFFF); /* in case |long| is 64 bits */
302 }
303 
304 #ifdef BYFOUR
305 
306 /*
307    This BYFOUR code accesses the passed unsigned char * buffer with a 32-bit
308    integer pointer type. This violates the strict aliasing rule, where a
309    compiler can assume, for optimization purposes, that two pointers to
310    fundamentally different types won't ever point to the same memory. This can
311    manifest as a problem only if one of the pointers is written to. This code
312    only reads from those pointers. So long as this code remains isolated in
313    this compilation unit, there won't be a problem. For this reason, this code
314    should not be copied and pasted into a compilation unit in which other code
315    writes to the buffer that is passed to these routines.
316  */
317 
318 /* ========================================================================= */
319 #define DOLIT4 c ^= *buf4++; \
320         c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \
321             crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24]
322 #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4
323 
324 /* ========================================================================= */
crc32_little(crc,buf,len)325 local unsigned long crc32_little(crc, buf, len)
326     unsigned long crc;
327     const unsigned char FAR *buf;
328     z_size_t len;
329 {
330     register z_crc_t c;
331     register const z_crc_t FAR *buf4;
332 
333     c = (z_crc_t)crc;
334     c = ~c;
335     while (len && ((ptrdiff_t)buf & 3)) {
336         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
337         len--;
338     }
339 
340     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
341     while (len >= 32) {
342         DOLIT32;
343         len -= 32;
344     }
345     while (len >= 4) {
346         DOLIT4;
347         len -= 4;
348     }
349     buf = (const unsigned char FAR *)buf4;
350 
351     if (len) do {
352         c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8);
353     } while (--len);
354     c = ~c;
355     return (unsigned long)c;
356 }
357 
358 /* ========================================================================= */
359 #define DOBIG4 c ^= *buf4++; \
360         c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \
361             crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24]
362 #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4
363 
364 /* ========================================================================= */
crc32_big(crc,buf,len)365 local unsigned long crc32_big(crc, buf, len)
366     unsigned long crc;
367     const unsigned char FAR *buf;
368     z_size_t len;
369 {
370     register z_crc_t c;
371     register const z_crc_t FAR *buf4;
372 
373     c = ZSWAP32((z_crc_t)crc);
374     c = ~c;
375     while (len && ((ptrdiff_t)buf & 3)) {
376         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
377         len--;
378     }
379 
380     buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
381     while (len >= 32) {
382         DOBIG32;
383         len -= 32;
384     }
385     while (len >= 4) {
386         DOBIG4;
387         len -= 4;
388     }
389     buf = (const unsigned char FAR *)buf4;
390 
391     if (len) do {
392         c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8);
393     } while (--len);
394     c = ~c;
395     return (unsigned long)(ZSWAP32(c));
396 }
397 
398 #endif /* BYFOUR */
399 
400 #define GF2_DIM 32      /* dimension of GF(2) vectors (length of CRC) */
401 
402 /* ========================================================================= */
403 #if 0 /* Unused */
404 local unsigned long gf2_matrix_times(mat, vec)
405     unsigned long *mat;
406     unsigned long vec;
407 {
408     unsigned long sum;
409 
410     sum = 0;
411     while (vec) {
412         if (vec & 1)
413             sum ^= *mat;
414         vec >>= 1;
415         mat++;
416     }
417     return sum;
418 }
419 
420 /* ========================================================================= */
421 local void gf2_matrix_square(square, mat)
422     unsigned long *square;
423     unsigned long *mat;
424 {
425     int n;
426 
427     for (n = 0; n < GF2_DIM; n++)
428         square[n] = gf2_matrix_times(mat, mat[n]);
429 }
430 
431 /* ========================================================================= */
432 
433 local uLong crc32_combine_(crc1, crc2, len2)
434     uLong crc1;
435     uLong crc2;
436     z_off64_t len2;
437 {
438     int n;
439     unsigned long row;
440     unsigned long even[GF2_DIM];    /* even-power-of-two zeros operator */
441     unsigned long odd[GF2_DIM];     /* odd-power-of-two zeros operator */
442 
443     /* degenerate case (also disallow negative lengths) */
444     if (len2 <= 0)
445         return crc1;
446 
447     /* put operator for one zero bit in odd */
448     odd[0] = 0xedb88320UL;          /* CRC-32 polynomial */
449     row = 1;
450     for (n = 1; n < GF2_DIM; n++) {
451         odd[n] = row;
452         row <<= 1;
453     }
454 
455     /* put operator for two zero bits in even */
456     gf2_matrix_square(even, odd);
457 
458     /* put operator for four zero bits in odd */
459     gf2_matrix_square(odd, even);
460 
461     /* apply len2 zeros to crc1 (first square will put the operator for one
462        zero byte, eight zero bits, in even) */
463     do {
464         /* apply zeros operator for this bit of len2 */
465         gf2_matrix_square(even, odd);
466         if (len2 & 1)
467             crc1 = gf2_matrix_times(even, crc1);
468         len2 >>= 1;
469 
470         /* if no more bits set, then done */
471         if (len2 == 0)
472             break;
473 
474         /* another iteration of the loop with odd and even swapped */
475         gf2_matrix_square(odd, even);
476         if (len2 & 1)
477             crc1 = gf2_matrix_times(odd, crc1);
478         len2 >>= 1;
479 
480         /* if no more bits set, then done */
481     } while (len2 != 0);
482 
483     /* return combined crc */
484     crc1 ^= crc2;
485     return crc1;
486 }
487 
488 /* ========================================================================= */
489 local uLong ZEXPORT crc32_combine(crc1, crc2, len2)
490     uLong crc1;
491     uLong crc2;
492     z_off_t len2;
493 {
494     return crc32_combine_(crc1, crc2, len2);
495 }
496 
497 local uLong ZEXPORT crc32_combine64(crc1, crc2, len2)
498     uLong crc1;
499     uLong crc2;
500     z_off64_t len2;
501 {
502     return crc32_combine_(crc1, crc2, len2);
503 }
504 #endif
505