1## Copyright (C) 2007 Muthiah Annamalai <muthiah.annamalai@uta.edu> 2## 3## This program is free software; you can redistribute it and/or modify it under 4## the terms of the GNU General Public License as published by the Free Software 5## Foundation; either version 3 of the License, or (at your option) any later 6## version. 7## 8## This program is distributed in the hope that it will be useful, but WITHOUT 9## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 11## details. 12## 13## You should have received a copy of the GNU General Public License along with 14## this program; if not, see <http://www.gnu.org/licenses/>. 15 16## -*- texinfo -*- 17## @deftypefn {Function File} {@var{coefs}=} legendrepoly (@var{order},@var{x}) 18## 19## Compute the coefficients of the Legendre polynomial, given the 20## @var{order}. We calculate the Legendre polynomial using the recurrence 21## relations, Pn+1(x) = inv(n+1)*((2n+1)*x*Pn(x) - nPn-1(x)). 22## 23## If the value @var{x} is specified, the polynomial is also evaluated, 24## otherwise just the return the coefficients of the polynomial are returned. 25## 26## This is NOT the generalized Legendre polynomial. 27## 28## @end deftypefn 29 30function h = legendrepoly (order, val) 31 if (nargin < 1 || nargin > 2) 32 print_usage 33 endif 34 35 h_prev = [0 1]; 36 h_now = [1 0]; 37 38 if order == 0 39 h=h_prev; 40 else 41 h=h_now; 42 endif 43 44 for ord=2:order 45 x=[]; 46 y=[]; 47 if (length(h_now) < (1+ord)) 48 x=0; 49 endif 50 y=zeros(1,(1+ord)-length(h_prev)); 51 p1=[h_now, x]; 52 p3=[y, h_prev]; 53 h=((2*ord -1).*p1 -(ord -1).*p3)./(ord); 54 h_prev=h_now; 55 h_now=h; 56 endfor 57 58 if nargin == 2 59 h=polyval(h,val); 60 endif 61 62endfunction 63