1*> \brief \b CHBGV
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CHBGV + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgv.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgv.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgv.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
22*                         LDZ, WORK, RWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          JOBZ, UPLO
26*       INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
27*       ..
28*       .. Array Arguments ..
29*       REAL               RWORK( * ), W( * )
30*       COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
31*      $                   Z( LDZ, * )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*> CHBGV computes all the eigenvalues, and optionally, the eigenvectors
41*> of a complex generalized Hermitian-definite banded eigenproblem, of
42*> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
43*> and banded, and B is also positive definite.
44*> \endverbatim
45*
46*  Arguments:
47*  ==========
48*
49*> \param[in] JOBZ
50*> \verbatim
51*>          JOBZ is CHARACTER*1
52*>          = 'N':  Compute eigenvalues only;
53*>          = 'V':  Compute eigenvalues and eigenvectors.
54*> \endverbatim
55*>
56*> \param[in] UPLO
57*> \verbatim
58*>          UPLO is CHARACTER*1
59*>          = 'U':  Upper triangles of A and B are stored;
60*>          = 'L':  Lower triangles of A and B are stored.
61*> \endverbatim
62*>
63*> \param[in] N
64*> \verbatim
65*>          N is INTEGER
66*>          The order of the matrices A and B.  N >= 0.
67*> \endverbatim
68*>
69*> \param[in] KA
70*> \verbatim
71*>          KA is INTEGER
72*>          The number of superdiagonals of the matrix A if UPLO = 'U',
73*>          or the number of subdiagonals if UPLO = 'L'. KA >= 0.
74*> \endverbatim
75*>
76*> \param[in] KB
77*> \verbatim
78*>          KB is INTEGER
79*>          The number of superdiagonals of the matrix B if UPLO = 'U',
80*>          or the number of subdiagonals if UPLO = 'L'. KB >= 0.
81*> \endverbatim
82*>
83*> \param[in,out] AB
84*> \verbatim
85*>          AB is COMPLEX array, dimension (LDAB, N)
86*>          On entry, the upper or lower triangle of the Hermitian band
87*>          matrix A, stored in the first ka+1 rows of the array.  The
88*>          j-th column of A is stored in the j-th column of the array AB
89*>          as follows:
90*>          if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
91*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+ka).
92*>
93*>          On exit, the contents of AB are destroyed.
94*> \endverbatim
95*>
96*> \param[in] LDAB
97*> \verbatim
98*>          LDAB is INTEGER
99*>          The leading dimension of the array AB.  LDAB >= KA+1.
100*> \endverbatim
101*>
102*> \param[in,out] BB
103*> \verbatim
104*>          BB is COMPLEX array, dimension (LDBB, N)
105*>          On entry, the upper or lower triangle of the Hermitian band
106*>          matrix B, stored in the first kb+1 rows of the array.  The
107*>          j-th column of B is stored in the j-th column of the array BB
108*>          as follows:
109*>          if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
110*>          if UPLO = 'L', BB(1+i-j,j)    = B(i,j) for j<=i<=min(n,j+kb).
111*>
112*>          On exit, the factor S from the split Cholesky factorization
113*>          B = S**H*S, as returned by CPBSTF.
114*> \endverbatim
115*>
116*> \param[in] LDBB
117*> \verbatim
118*>          LDBB is INTEGER
119*>          The leading dimension of the array BB.  LDBB >= KB+1.
120*> \endverbatim
121*>
122*> \param[out] W
123*> \verbatim
124*>          W is REAL array, dimension (N)
125*>          If INFO = 0, the eigenvalues in ascending order.
126*> \endverbatim
127*>
128*> \param[out] Z
129*> \verbatim
130*>          Z is COMPLEX array, dimension (LDZ, N)
131*>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
132*>          eigenvectors, with the i-th column of Z holding the
133*>          eigenvector associated with W(i). The eigenvectors are
134*>          normalized so that Z**H*B*Z = I.
135*>          If JOBZ = 'N', then Z is not referenced.
136*> \endverbatim
137*>
138*> \param[in] LDZ
139*> \verbatim
140*>          LDZ is INTEGER
141*>          The leading dimension of the array Z.  LDZ >= 1, and if
142*>          JOBZ = 'V', LDZ >= N.
143*> \endverbatim
144*>
145*> \param[out] WORK
146*> \verbatim
147*>          WORK is COMPLEX array, dimension (N)
148*> \endverbatim
149*>
150*> \param[out] RWORK
151*> \verbatim
152*>          RWORK is REAL array, dimension (3*N)
153*> \endverbatim
154*>
155*> \param[out] INFO
156*> \verbatim
157*>          INFO is INTEGER
158*>          = 0:  successful exit
159*>          < 0:  if INFO = -i, the i-th argument had an illegal value
160*>          > 0:  if INFO = i, and i is:
161*>             <= N:  the algorithm failed to converge:
162*>                    i off-diagonal elements of an intermediate
163*>                    tridiagonal form did not converge to zero;
164*>             > N:   if INFO = N + i, for 1 <= i <= N, then CPBSTF
165*>                    returned INFO = i: B is not positive definite.
166*>                    The factorization of B could not be completed and
167*>                    no eigenvalues or eigenvectors were computed.
168*> \endverbatim
169*
170*  Authors:
171*  ========
172*
173*> \author Univ. of Tennessee
174*> \author Univ. of California Berkeley
175*> \author Univ. of Colorado Denver
176*> \author NAG Ltd.
177*
178*> \date December 2016
179*
180*> \ingroup complexOTHEReigen
181*
182*  =====================================================================
183      SUBROUTINE CHBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z,
184     $                  LDZ, WORK, RWORK, INFO )
185*
186*  -- LAPACK driver routine (version 3.7.0) --
187*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
188*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
189*     December 2016
190*
191*     .. Scalar Arguments ..
192      CHARACTER          JOBZ, UPLO
193      INTEGER            INFO, KA, KB, LDAB, LDBB, LDZ, N
194*     ..
195*     .. Array Arguments ..
196      REAL               RWORK( * ), W( * )
197      COMPLEX            AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
198     $                   Z( LDZ, * )
199*     ..
200*
201*  =====================================================================
202*
203*     .. Local Scalars ..
204      LOGICAL            UPPER, WANTZ
205      CHARACTER          VECT
206      INTEGER            IINFO, INDE, INDWRK
207*     ..
208*     .. External Functions ..
209      LOGICAL            LSAME
210      EXTERNAL           LSAME
211*     ..
212*     .. External Subroutines ..
213      EXTERNAL           CHBGST, CHBTRD, CPBSTF, CSTEQR, SSTERF, XERBLA
214*     ..
215*     .. Executable Statements ..
216*
217*     Test the input parameters.
218*
219      WANTZ = LSAME( JOBZ, 'V' )
220      UPPER = LSAME( UPLO, 'U' )
221*
222      INFO = 0
223      IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
224         INFO = -1
225      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
226         INFO = -2
227      ELSE IF( N.LT.0 ) THEN
228         INFO = -3
229      ELSE IF( KA.LT.0 ) THEN
230         INFO = -4
231      ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
232         INFO = -5
233      ELSE IF( LDAB.LT.KA+1 ) THEN
234         INFO = -7
235      ELSE IF( LDBB.LT.KB+1 ) THEN
236         INFO = -9
237      ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
238         INFO = -12
239      END IF
240      IF( INFO.NE.0 ) THEN
241         CALL XERBLA( 'CHBGV ', -INFO )
242         RETURN
243      END IF
244*
245*     Quick return if possible
246*
247      IF( N.EQ.0 )
248     $   RETURN
249*
250*     Form a split Cholesky factorization of B.
251*
252      CALL CPBSTF( UPLO, N, KB, BB, LDBB, INFO )
253      IF( INFO.NE.0 ) THEN
254         INFO = N + INFO
255         RETURN
256      END IF
257*
258*     Transform problem to standard eigenvalue problem.
259*
260      INDE = 1
261      INDWRK = INDE + N
262      CALL CHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
263     $             WORK, RWORK( INDWRK ), IINFO )
264*
265*     Reduce to tridiagonal form.
266*
267      IF( WANTZ ) THEN
268         VECT = 'U'
269      ELSE
270         VECT = 'N'
271      END IF
272      CALL CHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
273     $             LDZ, WORK, IINFO )
274*
275*     For eigenvalues only, call SSTERF.  For eigenvectors, call CSTEQR.
276*
277      IF( .NOT.WANTZ ) THEN
278         CALL SSTERF( N, W, RWORK( INDE ), INFO )
279      ELSE
280         CALL CSTEQR( JOBZ, N, W, RWORK( INDE ), Z, LDZ,
281     $                RWORK( INDWRK ), INFO )
282      END IF
283      RETURN
284*
285*     End of CHBGV
286*
287      END
288