1*> \brief \b DPORFSX
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DPORFSX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dporfsx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dporfsx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dporfsx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
22*                           LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
23*                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
24*                           WORK, IWORK, INFO )
25*
26*       .. Scalar Arguments ..
27*       CHARACTER          UPLO, EQUED
28*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
29*      $                   N_ERR_BNDS
30*       DOUBLE PRECISION   RCOND
31*       ..
32*       .. Array Arguments ..
33*       INTEGER            IWORK( * )
34*       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
35*      $                   X( LDX, * ), WORK( * )
36*       DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
37*      $                   ERR_BNDS_NORM( NRHS, * ),
38*      $                   ERR_BNDS_COMP( NRHS, * )
39*       ..
40*
41*
42*> \par Purpose:
43*  =============
44*>
45*> \verbatim
46*>
47*>    DPORFSX improves the computed solution to a system of linear
48*>    equations when the coefficient matrix is symmetric positive
49*>    definite, and provides error bounds and backward error estimates
50*>    for the solution.  In addition to normwise error bound, the code
51*>    provides maximum componentwise error bound if possible.  See
52*>    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
53*>    error bounds.
54*>
55*>    The original system of linear equations may have been equilibrated
56*>    before calling this routine, as described by arguments EQUED and S
57*>    below. In this case, the solution and error bounds returned are
58*>    for the original unequilibrated system.
59*> \endverbatim
60*
61*  Arguments:
62*  ==========
63*
64*> \verbatim
65*>     Some optional parameters are bundled in the PARAMS array.  These
66*>     settings determine how refinement is performed, but often the
67*>     defaults are acceptable.  If the defaults are acceptable, users
68*>     can pass NPARAMS = 0 which prevents the source code from accessing
69*>     the PARAMS argument.
70*> \endverbatim
71*>
72*> \param[in] UPLO
73*> \verbatim
74*>          UPLO is CHARACTER*1
75*>       = 'U':  Upper triangle of A is stored;
76*>       = 'L':  Lower triangle of A is stored.
77*> \endverbatim
78*>
79*> \param[in] EQUED
80*> \verbatim
81*>          EQUED is CHARACTER*1
82*>     Specifies the form of equilibration that was done to A
83*>     before calling this routine. This is needed to compute
84*>     the solution and error bounds correctly.
85*>       = 'N':  No equilibration
86*>       = 'Y':  Both row and column equilibration, i.e., A has been
87*>               replaced by diag(S) * A * diag(S).
88*>               The right hand side B has been changed accordingly.
89*> \endverbatim
90*>
91*> \param[in] N
92*> \verbatim
93*>          N is INTEGER
94*>     The order of the matrix A.  N >= 0.
95*> \endverbatim
96*>
97*> \param[in] NRHS
98*> \verbatim
99*>          NRHS is INTEGER
100*>     The number of right hand sides, i.e., the number of columns
101*>     of the matrices B and X.  NRHS >= 0.
102*> \endverbatim
103*>
104*> \param[in] A
105*> \verbatim
106*>          A is DOUBLE PRECISION array, dimension (LDA,N)
107*>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
108*>     upper triangular part of A contains the upper triangular part
109*>     of the matrix A, and the strictly lower triangular part of A
110*>     is not referenced.  If UPLO = 'L', the leading N-by-N lower
111*>     triangular part of A contains the lower triangular part of
112*>     the matrix A, and the strictly upper triangular part of A is
113*>     not referenced.
114*> \endverbatim
115*>
116*> \param[in] LDA
117*> \verbatim
118*>          LDA is INTEGER
119*>     The leading dimension of the array A.  LDA >= max(1,N).
120*> \endverbatim
121*>
122*> \param[in] AF
123*> \verbatim
124*>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
125*>     The triangular factor U or L from the Cholesky factorization
126*>     A = U**T*U or A = L*L**T, as computed by DPOTRF.
127*> \endverbatim
128*>
129*> \param[in] LDAF
130*> \verbatim
131*>          LDAF is INTEGER
132*>     The leading dimension of the array AF.  LDAF >= max(1,N).
133*> \endverbatim
134*>
135*> \param[in,out] S
136*> \verbatim
137*>          S is DOUBLE PRECISION array, dimension (N)
138*>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
139*>     the left and right by diag(S).  S is an input argument if FACT =
140*>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
141*>     = 'Y', each element of S must be positive.  If S is output, each
142*>     element of S is a power of the radix. If S is input, each element
143*>     of S should be a power of the radix to ensure a reliable solution
144*>     and error estimates. Scaling by powers of the radix does not cause
145*>     rounding errors unless the result underflows or overflows.
146*>     Rounding errors during scaling lead to refining with a matrix that
147*>     is not equivalent to the input matrix, producing error estimates
148*>     that may not be reliable.
149*> \endverbatim
150*>
151*> \param[in] B
152*> \verbatim
153*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
154*>     The right hand side matrix B.
155*> \endverbatim
156*>
157*> \param[in] LDB
158*> \verbatim
159*>          LDB is INTEGER
160*>     The leading dimension of the array B.  LDB >= max(1,N).
161*> \endverbatim
162*>
163*> \param[in,out] X
164*> \verbatim
165*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
166*>     On entry, the solution matrix X, as computed by DGETRS.
167*>     On exit, the improved solution matrix X.
168*> \endverbatim
169*>
170*> \param[in] LDX
171*> \verbatim
172*>          LDX is INTEGER
173*>     The leading dimension of the array X.  LDX >= max(1,N).
174*> \endverbatim
175*>
176*> \param[out] RCOND
177*> \verbatim
178*>          RCOND is DOUBLE PRECISION
179*>     Reciprocal scaled condition number.  This is an estimate of the
180*>     reciprocal Skeel condition number of the matrix A after
181*>     equilibration (if done).  If this is less than the machine
182*>     precision (in particular, if it is zero), the matrix is singular
183*>     to working precision.  Note that the error may still be small even
184*>     if this number is very small and the matrix appears ill-
185*>     conditioned.
186*> \endverbatim
187*>
188*> \param[out] BERR
189*> \verbatim
190*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
191*>     Componentwise relative backward error.  This is the
192*>     componentwise relative backward error of each solution vector X(j)
193*>     (i.e., the smallest relative change in any element of A or B that
194*>     makes X(j) an exact solution).
195*> \endverbatim
196*>
197*> \param[in] N_ERR_BNDS
198*> \verbatim
199*>          N_ERR_BNDS is INTEGER
200*>     Number of error bounds to return for each right hand side
201*>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
202*>     ERR_BNDS_COMP below.
203*> \endverbatim
204*>
205*> \param[out] ERR_BNDS_NORM
206*> \verbatim
207*>          ERR_BNDS_NORM is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
208*>     For each right-hand side, this array contains information about
209*>     various error bounds and condition numbers corresponding to the
210*>     normwise relative error, which is defined as follows:
211*>
212*>     Normwise relative error in the ith solution vector:
213*>             max_j (abs(XTRUE(j,i) - X(j,i)))
214*>            ------------------------------
215*>                  max_j abs(X(j,i))
216*>
217*>     The array is indexed by the type of error information as described
218*>     below. There currently are up to three pieces of information
219*>     returned.
220*>
221*>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
222*>     right-hand side.
223*>
224*>     The second index in ERR_BNDS_NORM(:,err) contains the following
225*>     three fields:
226*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
227*>              reciprocal condition number is less than the threshold
228*>              sqrt(n) * dlamch('Epsilon').
229*>
230*>     err = 2 "Guaranteed" error bound: The estimated forward error,
231*>              almost certainly within a factor of 10 of the true error
232*>              so long as the next entry is greater than the threshold
233*>              sqrt(n) * dlamch('Epsilon'). This error bound should only
234*>              be trusted if the previous boolean is true.
235*>
236*>     err = 3  Reciprocal condition number: Estimated normwise
237*>              reciprocal condition number.  Compared with the threshold
238*>              sqrt(n) * dlamch('Epsilon') to determine if the error
239*>              estimate is "guaranteed". These reciprocal condition
240*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
241*>              appropriately scaled matrix Z.
242*>              Let Z = S*A, where S scales each row by a power of the
243*>              radix so all absolute row sums of Z are approximately 1.
244*>
245*>     See Lapack Working Note 165 for further details and extra
246*>     cautions.
247*> \endverbatim
248*>
249*> \param[out] ERR_BNDS_COMP
250*> \verbatim
251*>          ERR_BNDS_COMP is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
252*>     For each right-hand side, this array contains information about
253*>     various error bounds and condition numbers corresponding to the
254*>     componentwise relative error, which is defined as follows:
255*>
256*>     Componentwise relative error in the ith solution vector:
257*>                    abs(XTRUE(j,i) - X(j,i))
258*>             max_j ----------------------
259*>                         abs(X(j,i))
260*>
261*>     The array is indexed by the right-hand side i (on which the
262*>     componentwise relative error depends), and the type of error
263*>     information as described below. There currently are up to three
264*>     pieces of information returned for each right-hand side. If
265*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
266*>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
267*>     the first (:,N_ERR_BNDS) entries are returned.
268*>
269*>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
270*>     right-hand side.
271*>
272*>     The second index in ERR_BNDS_COMP(:,err) contains the following
273*>     three fields:
274*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
275*>              reciprocal condition number is less than the threshold
276*>              sqrt(n) * dlamch('Epsilon').
277*>
278*>     err = 2 "Guaranteed" error bound: The estimated forward error,
279*>              almost certainly within a factor of 10 of the true error
280*>              so long as the next entry is greater than the threshold
281*>              sqrt(n) * dlamch('Epsilon'). This error bound should only
282*>              be trusted if the previous boolean is true.
283*>
284*>     err = 3  Reciprocal condition number: Estimated componentwise
285*>              reciprocal condition number.  Compared with the threshold
286*>              sqrt(n) * dlamch('Epsilon') to determine if the error
287*>              estimate is "guaranteed". These reciprocal condition
288*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
289*>              appropriately scaled matrix Z.
290*>              Let Z = S*(A*diag(x)), where x is the solution for the
291*>              current right-hand side and S scales each row of
292*>              A*diag(x) by a power of the radix so all absolute row
293*>              sums of Z are approximately 1.
294*>
295*>     See Lapack Working Note 165 for further details and extra
296*>     cautions.
297*> \endverbatim
298*>
299*> \param[in] NPARAMS
300*> \verbatim
301*>          NPARAMS is INTEGER
302*>     Specifies the number of parameters set in PARAMS.  If <= 0, the
303*>     PARAMS array is never referenced and default values are used.
304*> \endverbatim
305*>
306*> \param[in,out] PARAMS
307*> \verbatim
308*>          PARAMS is DOUBLE PRECISION array, dimension (NPARAMS)
309*>     Specifies algorithm parameters.  If an entry is < 0.0, then
310*>     that entry will be filled with default value used for that
311*>     parameter.  Only positions up to NPARAMS are accessed; defaults
312*>     are used for higher-numbered parameters.
313*>
314*>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
315*>            refinement or not.
316*>         Default: 1.0D+0
317*>            = 0.0:  No refinement is performed, and no error bounds are
318*>                    computed.
319*>            = 1.0:  Use the double-precision refinement algorithm,
320*>                    possibly with doubled-single computations if the
321*>                    compilation environment does not support DOUBLE
322*>                    PRECISION.
323*>              (other values are reserved for future use)
324*>
325*>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
326*>            computations allowed for refinement.
327*>         Default: 10
328*>         Aggressive: Set to 100 to permit convergence using approximate
329*>                     factorizations or factorizations other than LU. If
330*>                     the factorization uses a technique other than
331*>                     Gaussian elimination, the guarantees in
332*>                     err_bnds_norm and err_bnds_comp may no longer be
333*>                     trustworthy.
334*>
335*>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
336*>            will attempt to find a solution with small componentwise
337*>            relative error in the double-precision algorithm.  Positive
338*>            is true, 0.0 is false.
339*>         Default: 1.0 (attempt componentwise convergence)
340*> \endverbatim
341*>
342*> \param[out] WORK
343*> \verbatim
344*>          WORK is DOUBLE PRECISION array, dimension (4*N)
345*> \endverbatim
346*>
347*> \param[out] IWORK
348*> \verbatim
349*>          IWORK is INTEGER array, dimension (N)
350*> \endverbatim
351*>
352*> \param[out] INFO
353*> \verbatim
354*>          INFO is INTEGER
355*>       = 0:  Successful exit. The solution to every right-hand side is
356*>         guaranteed.
357*>       < 0:  If INFO = -i, the i-th argument had an illegal value
358*>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
359*>         has been completed, but the factor U is exactly singular, so
360*>         the solution and error bounds could not be computed. RCOND = 0
361*>         is returned.
362*>       = N+J: The solution corresponding to the Jth right-hand side is
363*>         not guaranteed. The solutions corresponding to other right-
364*>         hand sides K with K > J may not be guaranteed as well, but
365*>         only the first such right-hand side is reported. If a small
366*>         componentwise error is not requested (PARAMS(3) = 0.0) then
367*>         the Jth right-hand side is the first with a normwise error
368*>         bound that is not guaranteed (the smallest J such
369*>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
370*>         the Jth right-hand side is the first with either a normwise or
371*>         componentwise error bound that is not guaranteed (the smallest
372*>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
373*>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
374*>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
375*>         about all of the right-hand sides check ERR_BNDS_NORM or
376*>         ERR_BNDS_COMP.
377*> \endverbatim
378*
379*  Authors:
380*  ========
381*
382*> \author Univ. of Tennessee
383*> \author Univ. of California Berkeley
384*> \author Univ. of Colorado Denver
385*> \author NAG Ltd.
386*
387*> \date April 2012
388*
389*> \ingroup doublePOcomputational
390*
391*  =====================================================================
392      SUBROUTINE DPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
393     $                    LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
394     $                    ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
395     $                    WORK, IWORK, INFO )
396*
397*  -- LAPACK computational routine (version 3.7.0) --
398*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
399*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
400*     April 2012
401*
402*     .. Scalar Arguments ..
403      CHARACTER          UPLO, EQUED
404      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
405     $                   N_ERR_BNDS
406      DOUBLE PRECISION   RCOND
407*     ..
408*     .. Array Arguments ..
409      INTEGER            IWORK( * )
410      DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
411     $                   X( LDX, * ), WORK( * )
412      DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ),
413     $                   ERR_BNDS_NORM( NRHS, * ),
414     $                   ERR_BNDS_COMP( NRHS, * )
415*     ..
416*
417*  ==================================================================
418*
419*     .. Parameters ..
420      DOUBLE PRECISION   ZERO, ONE
421      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
422      DOUBLE PRECISION   ITREF_DEFAULT, ITHRESH_DEFAULT
423      DOUBLE PRECISION   COMPONENTWISE_DEFAULT, RTHRESH_DEFAULT
424      DOUBLE PRECISION   DZTHRESH_DEFAULT
425      PARAMETER          ( ITREF_DEFAULT = 1.0D+0 )
426      PARAMETER          ( ITHRESH_DEFAULT = 10.0D+0 )
427      PARAMETER          ( COMPONENTWISE_DEFAULT = 1.0D+0 )
428      PARAMETER          ( RTHRESH_DEFAULT = 0.5D+0 )
429      PARAMETER          ( DZTHRESH_DEFAULT = 0.25D+0 )
430      INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
431     $                   LA_LINRX_CWISE_I
432      PARAMETER          ( LA_LINRX_ITREF_I = 1,
433     $                   LA_LINRX_ITHRESH_I = 2 )
434      PARAMETER          ( LA_LINRX_CWISE_I = 3 )
435      INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
436     $                   LA_LINRX_RCOND_I
437      PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
438      PARAMETER          ( LA_LINRX_RCOND_I = 3 )
439*     ..
440*     .. Local Scalars ..
441      CHARACTER(1)       NORM
442      LOGICAL            RCEQU
443      INTEGER            J, PREC_TYPE, REF_TYPE
444      INTEGER            N_NORMS
445      DOUBLE PRECISION   ANORM, RCOND_TMP
446      DOUBLE PRECISION   ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
447      LOGICAL            IGNORE_CWISE
448      INTEGER            ITHRESH
449      DOUBLE PRECISION   RTHRESH, UNSTABLE_THRESH
450*     ..
451*     .. External Subroutines ..
452      EXTERNAL           XERBLA, DPOCON, DLA_PORFSX_EXTENDED
453*     ..
454*     .. Intrinsic Functions ..
455      INTRINSIC          MAX, SQRT
456*     ..
457*     .. External Functions ..
458      EXTERNAL           LSAME, ILAPREC
459      EXTERNAL           DLAMCH, DLANSY, DLA_PORCOND
460      DOUBLE PRECISION   DLAMCH, DLANSY, DLA_PORCOND
461      LOGICAL            LSAME
462      INTEGER            ILAPREC
463*     ..
464*     .. Executable Statements ..
465*
466*     Check the input parameters.
467*
468      INFO = 0
469      REF_TYPE = INT( ITREF_DEFAULT )
470      IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
471         IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0D+0 ) THEN
472            PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
473         ELSE
474            REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
475         END IF
476      END IF
477*
478*     Set default parameters.
479*
480      ILLRCOND_THRESH = DBLE( N ) * DLAMCH( 'Epsilon' )
481      ITHRESH = INT( ITHRESH_DEFAULT )
482      RTHRESH = RTHRESH_DEFAULT
483      UNSTABLE_THRESH = DZTHRESH_DEFAULT
484      IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0D+0
485*
486      IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
487         IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0D+0 ) THEN
488            PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
489         ELSE
490            ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
491         END IF
492      END IF
493      IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
494         IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0D+0 ) THEN
495            IF ( IGNORE_CWISE ) THEN
496               PARAMS( LA_LINRX_CWISE_I ) = 0.0D+0
497            ELSE
498               PARAMS( LA_LINRX_CWISE_I ) = 1.0D+0
499            END IF
500         ELSE
501            IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0D+0
502         END IF
503      END IF
504      IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
505         N_NORMS = 0
506      ELSE IF ( IGNORE_CWISE ) THEN
507         N_NORMS = 1
508      ELSE
509         N_NORMS = 2
510      END IF
511*
512      RCEQU = LSAME( EQUED, 'Y' )
513*
514*     Test input parameters.
515*
516      IF (.NOT.LSAME(UPLO, 'U') .AND. .NOT.LSAME(UPLO, 'L')) THEN
517        INFO = -1
518      ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
519        INFO = -2
520      ELSE IF( N.LT.0 ) THEN
521        INFO = -3
522      ELSE IF( NRHS.LT.0 ) THEN
523        INFO = -4
524      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
525        INFO = -6
526      ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
527        INFO = -8
528      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
529        INFO = -11
530      ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
531        INFO = -13
532      END IF
533      IF( INFO.NE.0 ) THEN
534        CALL XERBLA( 'DPORFSX', -INFO )
535        RETURN
536      END IF
537*
538*     Quick return if possible.
539*
540      IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
541         RCOND = 1.0D+0
542         DO J = 1, NRHS
543            BERR( J ) = 0.0D+0
544            IF ( N_ERR_BNDS .GE. 1 ) THEN
545               ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
546               ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
547            END IF
548            IF ( N_ERR_BNDS .GE. 2 ) THEN
549               ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0D+0
550               ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0D+0
551            END IF
552            IF ( N_ERR_BNDS .GE. 3 ) THEN
553               ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0D+0
554               ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0D+0
555            END IF
556         END DO
557         RETURN
558      END IF
559*
560*     Default to failure.
561*
562      RCOND = 0.0D+0
563      DO J = 1, NRHS
564         BERR( J ) = 1.0D+0
565         IF ( N_ERR_BNDS .GE. 1 ) THEN
566            ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
567            ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
568         END IF
569         IF ( N_ERR_BNDS .GE. 2 ) THEN
570            ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
571            ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
572         END IF
573         IF ( N_ERR_BNDS .GE. 3 ) THEN
574            ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0D+0
575            ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0D+0
576         END IF
577      END DO
578*
579*     Compute the norm of A and the reciprocal of the condition
580*     number of A.
581*
582      NORM = 'I'
583      ANORM = DLANSY( NORM, UPLO, N, A, LDA, WORK )
584      CALL DPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK,
585     $     IWORK, INFO )
586*
587*     Perform refinement on each right-hand side
588*
589      IF ( REF_TYPE .NE. 0 ) THEN
590
591         PREC_TYPE = ILAPREC( 'E' )
592
593         CALL DLA_PORFSX_EXTENDED( PREC_TYPE, UPLO,  N,
594     $        NRHS, A, LDA, AF, LDAF, RCEQU, S, B,
595     $        LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
596     $        WORK( N+1 ), WORK( 1 ), WORK( 2*N+1 ), WORK( 1 ), RCOND,
597     $        ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
598     $        INFO )
599      END IF
600
601      ERR_LBND = MAX( 10.0D+0, SQRT( DBLE( N ) ) ) * DLAMCH( 'Epsilon' )
602      IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
603*
604*     Compute scaled normwise condition number cond(A*C).
605*
606         IF ( RCEQU ) THEN
607            RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
608     $           -1, S, INFO, WORK, IWORK )
609         ELSE
610            RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
611     $           0, S, INFO, WORK, IWORK )
612         END IF
613         DO J = 1, NRHS
614*
615*     Cap the error at 1.0.
616*
617            IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
618     $           .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
619     $           ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
620*
621*     Threshold the error (see LAWN).
622*
623            IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
624               ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0D+0
625               ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0D+0
626               IF ( INFO .LE. N ) INFO = N + J
627            ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
628     $              THEN
629               ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
630               ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0D+0
631            END IF
632*
633*     Save the condition number.
634*
635            IF (N_ERR_BNDS .GE. LA_LINRX_RCOND_I) THEN
636               ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
637            END IF
638         END DO
639      END IF
640
641      IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
642*
643*     Compute componentwise condition number cond(A*diag(Y(:,J))) for
644*     each right-hand side using the current solution as an estimate of
645*     the true solution.  If the componentwise error estimate is too
646*     large, then the solution is a lousy estimate of truth and the
647*     estimated RCOND may be too optimistic.  To avoid misleading users,
648*     the inverse condition number is set to 0.0 when the estimated
649*     cwise error is at least CWISE_WRONG.
650*
651         CWISE_WRONG = SQRT( DLAMCH( 'Epsilon' ) )
652         DO J = 1, NRHS
653            IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
654     $     THEN
655               RCOND_TMP = DLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, 1,
656     $              X( 1, J ), INFO, WORK, IWORK )
657            ELSE
658               RCOND_TMP = 0.0D+0
659            END IF
660*
661*     Cap the error at 1.0.
662*
663            IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
664     $           .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0D+0 )
665     $           ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
666*
667*     Threshold the error (see LAWN).
668*
669            IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
670               ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0D+0
671               ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0D+0
672               IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0D+0
673     $              .AND. INFO.LT.N + J ) INFO = N + J
674            ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
675     $              .LT. ERR_LBND ) THEN
676               ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
677               ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0D+0
678            END IF
679*
680*     Save the condition number.
681*
682            IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
683               ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP
684            END IF
685
686         END DO
687      END IF
688*
689      RETURN
690*
691*     End of DPORFSX
692*
693      END
694