1*> \brief \b DTGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal equivalence transformation.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DTGEX2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtgex2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtgex2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtgex2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
22*                          LDZ, J1, N1, N2, WORK, LWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       LOGICAL            WANTQ, WANTZ
26*       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
27*       ..
28*       .. Array Arguments ..
29*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
30*      $                   WORK( * ), Z( LDZ, * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*> DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
40*> of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
41*> (A, B) by an orthogonal equivalence transformation.
42*>
43*> (A, B) must be in generalized real Schur canonical form (as returned
44*> by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
45*> diagonal blocks. B is upper triangular.
46*>
47*> Optionally, the matrices Q and Z of generalized Schur vectors are
48*> updated.
49*>
50*>        Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
51*>        Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
52*>
53*> \endverbatim
54*
55*  Arguments:
56*  ==========
57*
58*> \param[in] WANTQ
59*> \verbatim
60*>          WANTQ is LOGICAL
61*>          .TRUE. : update the left transformation matrix Q;
62*>          .FALSE.: do not update Q.
63*> \endverbatim
64*>
65*> \param[in] WANTZ
66*> \verbatim
67*>          WANTZ is LOGICAL
68*>          .TRUE. : update the right transformation matrix Z;
69*>          .FALSE.: do not update Z.
70*> \endverbatim
71*>
72*> \param[in] N
73*> \verbatim
74*>          N is INTEGER
75*>          The order of the matrices A and B. N >= 0.
76*> \endverbatim
77*>
78*> \param[in,out] A
79*> \verbatim
80*>          A is DOUBLE PRECISION array, dimensions (LDA,N)
81*>          On entry, the matrix A in the pair (A, B).
82*>          On exit, the updated matrix A.
83*> \endverbatim
84*>
85*> \param[in] LDA
86*> \verbatim
87*>          LDA is INTEGER
88*>          The leading dimension of the array A. LDA >= max(1,N).
89*> \endverbatim
90*>
91*> \param[in,out] B
92*> \verbatim
93*>          B is DOUBLE PRECISION array, dimensions (LDB,N)
94*>          On entry, the matrix B in the pair (A, B).
95*>          On exit, the updated matrix B.
96*> \endverbatim
97*>
98*> \param[in] LDB
99*> \verbatim
100*>          LDB is INTEGER
101*>          The leading dimension of the array B. LDB >= max(1,N).
102*> \endverbatim
103*>
104*> \param[in,out] Q
105*> \verbatim
106*>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
107*>          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
108*>          On exit, the updated matrix Q.
109*>          Not referenced if WANTQ = .FALSE..
110*> \endverbatim
111*>
112*> \param[in] LDQ
113*> \verbatim
114*>          LDQ is INTEGER
115*>          The leading dimension of the array Q. LDQ >= 1.
116*>          If WANTQ = .TRUE., LDQ >= N.
117*> \endverbatim
118*>
119*> \param[in,out] Z
120*> \verbatim
121*>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
122*>          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
123*>          On exit, the updated matrix Z.
124*>          Not referenced if WANTZ = .FALSE..
125*> \endverbatim
126*>
127*> \param[in] LDZ
128*> \verbatim
129*>          LDZ is INTEGER
130*>          The leading dimension of the array Z. LDZ >= 1.
131*>          If WANTZ = .TRUE., LDZ >= N.
132*> \endverbatim
133*>
134*> \param[in] J1
135*> \verbatim
136*>          J1 is INTEGER
137*>          The index to the first block (A11, B11). 1 <= J1 <= N.
138*> \endverbatim
139*>
140*> \param[in] N1
141*> \verbatim
142*>          N1 is INTEGER
143*>          The order of the first block (A11, B11). N1 = 0, 1 or 2.
144*> \endverbatim
145*>
146*> \param[in] N2
147*> \verbatim
148*>          N2 is INTEGER
149*>          The order of the second block (A22, B22). N2 = 0, 1 or 2.
150*> \endverbatim
151*>
152*> \param[out] WORK
153*> \verbatim
154*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
155*> \endverbatim
156*>
157*> \param[in] LWORK
158*> \verbatim
159*>          LWORK is INTEGER
160*>          The dimension of the array WORK.
161*>          LWORK >=  MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 )
162*> \endverbatim
163*>
164*> \param[out] INFO
165*> \verbatim
166*>          INFO is INTEGER
167*>            =0: Successful exit
168*>            >0: If INFO = 1, the transformed matrix (A, B) would be
169*>                too far from generalized Schur form; the blocks are
170*>                not swapped and (A, B) and (Q, Z) are unchanged.
171*>                The problem of swapping is too ill-conditioned.
172*>            <0: If INFO = -16: LWORK is too small. Appropriate value
173*>                for LWORK is returned in WORK(1).
174*> \endverbatim
175*
176*  Authors:
177*  ========
178*
179*> \author Univ. of Tennessee
180*> \author Univ. of California Berkeley
181*> \author Univ. of Colorado Denver
182*> \author NAG Ltd.
183*
184*> \date December 2016
185*
186*> \ingroup doubleGEauxiliary
187*
188*> \par Further Details:
189*  =====================
190*>
191*>  In the current code both weak and strong stability tests are
192*>  performed. The user can omit the strong stability test by changing
193*>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
194*>  details.
195*
196*> \par Contributors:
197*  ==================
198*>
199*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
200*>     Umea University, S-901 87 Umea, Sweden.
201*
202*> \par References:
203*  ================
204*>
205*> \verbatim
206*>
207*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
208*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
209*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
210*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
211*>
212*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
213*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
214*>      Estimation: Theory, Algorithms and Software,
215*>      Report UMINF - 94.04, Department of Computing Science, Umea
216*>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
217*>      Note 87. To appear in Numerical Algorithms, 1996.
218*> \endverbatim
219*>
220*  =====================================================================
221      SUBROUTINE DTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
222     $                   LDZ, J1, N1, N2, WORK, LWORK, INFO )
223*
224*  -- LAPACK auxiliary routine (version 3.7.0) --
225*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
226*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
227*     December 2016
228*
229*     .. Scalar Arguments ..
230      LOGICAL            WANTQ, WANTZ
231      INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
232*     ..
233*     .. Array Arguments ..
234      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
235     $                   WORK( * ), Z( LDZ, * )
236*     ..
237*
238*  =====================================================================
239*  Replaced various illegal calls to DCOPY by calls to DLASET, or by DO
240*  loops. Sven Hammarling, 1/5/02.
241*
242*     .. Parameters ..
243      DOUBLE PRECISION   ZERO, ONE
244      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
245      DOUBLE PRECISION   TWENTY
246      PARAMETER          ( TWENTY = 2.0D+01 )
247      INTEGER            LDST
248      PARAMETER          ( LDST = 4 )
249      LOGICAL            WANDS
250      PARAMETER          ( WANDS = .TRUE. )
251*     ..
252*     .. Local Scalars ..
253      LOGICAL            DTRONG, WEAK
254      INTEGER            I, IDUM, LINFO, M
255      DOUBLE PRECISION   BQRA21, BRQA21, DDUM, DNORM, DSCALE, DSUM, EPS,
256     $                   F, G, SA, SB, SCALE, SMLNUM, SS, THRESH, WS
257*     ..
258*     .. Local Arrays ..
259      INTEGER            IWORK( LDST )
260      DOUBLE PRECISION   AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
261     $                   IRCOP( LDST, LDST ), LI( LDST, LDST ),
262     $                   LICOP( LDST, LDST ), S( LDST, LDST ),
263     $                   SCPY( LDST, LDST ), T( LDST, LDST ),
264     $                   TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
265*     ..
266*     .. External Functions ..
267      DOUBLE PRECISION   DLAMCH
268      EXTERNAL           DLAMCH
269*     ..
270*     .. External Subroutines ..
271      EXTERNAL           DGEMM, DGEQR2, DGERQ2, DLACPY, DLAGV2, DLARTG,
272     $                   DLASET, DLASSQ, DORG2R, DORGR2, DORM2R, DORMR2,
273     $                   DROT, DSCAL, DTGSY2
274*     ..
275*     .. Intrinsic Functions ..
276      INTRINSIC          ABS, MAX, SQRT
277*     ..
278*     .. Executable Statements ..
279*
280      INFO = 0
281*
282*     Quick return if possible
283*
284      IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
285     $   RETURN
286      IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
287     $   RETURN
288      M = N1 + N2
289      IF( LWORK.LT.MAX( 1, N*M, M*M*2 ) ) THEN
290         INFO = -16
291         WORK( 1 ) = MAX( 1, N*M, M*M*2 )
292         RETURN
293      END IF
294*
295      WEAK = .FALSE.
296      DTRONG = .FALSE.
297*
298*     Make a local copy of selected block
299*
300      CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
301      CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
302      CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
303      CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
304*
305*     Compute threshold for testing acceptance of swapping.
306*
307      EPS = DLAMCH( 'P' )
308      SMLNUM = DLAMCH( 'S' ) / EPS
309      DSCALE = ZERO
310      DSUM = ONE
311      CALL DLACPY( 'Full', M, M, S, LDST, WORK, M )
312      CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
313      CALL DLACPY( 'Full', M, M, T, LDST, WORK, M )
314      CALL DLASSQ( M*M, WORK, 1, DSCALE, DSUM )
315      DNORM = DSCALE*SQRT( DSUM )
316*
317*     THRES has been changed from
318*        THRESH = MAX( TEN*EPS*SA, SMLNUM )
319*     to
320*        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
321*     on 04/01/10.
322*     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
323*     Jim Demmel and Guillaume Revy. See forum post 1783.
324*
325      THRESH = MAX( TWENTY*EPS*DNORM, SMLNUM )
326*
327      IF( M.EQ.2 ) THEN
328*
329*        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
330*
331*        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
332*        using Givens rotations and perform the swap tentatively.
333*
334         F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
335         G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
336         SB = ABS( T( 2, 2 ) )
337         SA = ABS( S( 2, 2 ) )
338         CALL DLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
339         IR( 2, 1 ) = -IR( 1, 2 )
340         IR( 2, 2 ) = IR( 1, 1 )
341         CALL DROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
342     $              IR( 2, 1 ) )
343         CALL DROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
344     $              IR( 2, 1 ) )
345         IF( SA.GE.SB ) THEN
346            CALL DLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
347     $                   DDUM )
348         ELSE
349            CALL DLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
350     $                   DDUM )
351         END IF
352         CALL DROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
353     $              LI( 2, 1 ) )
354         CALL DROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
355     $              LI( 2, 1 ) )
356         LI( 2, 2 ) = LI( 1, 1 )
357         LI( 1, 2 ) = -LI( 2, 1 )
358*
359*        Weak stability test:
360*           |S21| + |T21| <= O(EPS * F-norm((S, T)))
361*
362         WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) )
363         WEAK = WS.LE.THRESH
364         IF( .NOT.WEAK )
365     $      GO TO 70
366*
367         IF( WANDS ) THEN
368*
369*           Strong stability test:
370*             F-norm((A-QL**T*S*QR, B-QL**T*T*QR)) <= O(EPS*F-norm((A,B)))
371*
372            CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
373     $                   M )
374            CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
375     $                  WORK, M )
376            CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
377     $                  WORK( M*M+1 ), M )
378            DSCALE = ZERO
379            DSUM = ONE
380            CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
381*
382            CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
383     $                   M )
384            CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
385     $                  WORK, M )
386            CALL DGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
387     $                  WORK( M*M+1 ), M )
388            CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
389            SS = DSCALE*SQRT( DSUM )
390            DTRONG = SS.LE.THRESH
391            IF( .NOT.DTRONG )
392     $         GO TO 70
393         END IF
394*
395*        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
396*               (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
397*
398         CALL DROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
399     $              IR( 2, 1 ) )
400         CALL DROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
401     $              IR( 2, 1 ) )
402         CALL DROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
403     $              LI( 1, 1 ), LI( 2, 1 ) )
404         CALL DROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
405     $              LI( 1, 1 ), LI( 2, 1 ) )
406*
407*        Set  N1-by-N2 (2,1) - blocks to ZERO.
408*
409         A( J1+1, J1 ) = ZERO
410         B( J1+1, J1 ) = ZERO
411*
412*        Accumulate transformations into Q and Z if requested.
413*
414         IF( WANTZ )
415     $      CALL DROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
416     $                 IR( 2, 1 ) )
417         IF( WANTQ )
418     $      CALL DROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
419     $                 LI( 2, 1 ) )
420*
421*        Exit with INFO = 0 if swap was successfully performed.
422*
423         RETURN
424*
425      ELSE
426*
427*        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
428*                and 2-by-2 blocks.
429*
430*        Solve the generalized Sylvester equation
431*                 S11 * R - L * S22 = SCALE * S12
432*                 T11 * R - L * T22 = SCALE * T12
433*        for R and L. Solutions in LI and IR.
434*
435         CALL DLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
436         CALL DLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
437     $                IR( N2+1, N1+1 ), LDST )
438         CALL DTGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
439     $                IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
440     $                LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
441     $                LINFO )
442*
443*        Compute orthogonal matrix QL:
444*
445*                    QL**T * LI = [ TL ]
446*                                 [ 0  ]
447*        where
448*                    LI =  [      -L              ]
449*                          [ SCALE * identity(N2) ]
450*
451         DO 10 I = 1, N2
452            CALL DSCAL( N1, -ONE, LI( 1, I ), 1 )
453            LI( N1+I, I ) = SCALE
454   10    CONTINUE
455         CALL DGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
456         IF( LINFO.NE.0 )
457     $      GO TO 70
458         CALL DORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
459         IF( LINFO.NE.0 )
460     $      GO TO 70
461*
462*        Compute orthogonal matrix RQ:
463*
464*                    IR * RQ**T =   [ 0  TR],
465*
466*         where IR = [ SCALE * identity(N1), R ]
467*
468         DO 20 I = 1, N1
469            IR( N2+I, I ) = SCALE
470   20    CONTINUE
471         CALL DGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
472         IF( LINFO.NE.0 )
473     $      GO TO 70
474         CALL DORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
475         IF( LINFO.NE.0 )
476     $      GO TO 70
477*
478*        Perform the swapping tentatively:
479*
480         CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
481     $               WORK, M )
482         CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
483     $               LDST )
484         CALL DGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
485     $               WORK, M )
486         CALL DGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
487     $               LDST )
488         CALL DLACPY( 'F', M, M, S, LDST, SCPY, LDST )
489         CALL DLACPY( 'F', M, M, T, LDST, TCPY, LDST )
490         CALL DLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
491         CALL DLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
492*
493*        Triangularize the B-part by an RQ factorization.
494*        Apply transformation (from left) to A-part, giving S.
495*
496         CALL DGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
497         IF( LINFO.NE.0 )
498     $      GO TO 70
499         CALL DORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
500     $                LINFO )
501         IF( LINFO.NE.0 )
502     $      GO TO 70
503         CALL DORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
504     $                LINFO )
505         IF( LINFO.NE.0 )
506     $      GO TO 70
507*
508*        Compute F-norm(S21) in BRQA21. (T21 is 0.)
509*
510         DSCALE = ZERO
511         DSUM = ONE
512         DO 30 I = 1, N2
513            CALL DLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
514   30    CONTINUE
515         BRQA21 = DSCALE*SQRT( DSUM )
516*
517*        Triangularize the B-part by a QR factorization.
518*        Apply transformation (from right) to A-part, giving S.
519*
520         CALL DGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
521         IF( LINFO.NE.0 )
522     $      GO TO 70
523         CALL DORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
524     $                WORK, INFO )
525         CALL DORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
526     $                WORK, INFO )
527         IF( LINFO.NE.0 )
528     $      GO TO 70
529*
530*        Compute F-norm(S21) in BQRA21. (T21 is 0.)
531*
532         DSCALE = ZERO
533         DSUM = ONE
534         DO 40 I = 1, N2
535            CALL DLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
536   40    CONTINUE
537         BQRA21 = DSCALE*SQRT( DSUM )
538*
539*        Decide which method to use.
540*          Weak stability test:
541*             F-norm(S21) <= O(EPS * F-norm((S, T)))
542*
543         IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESH ) THEN
544            CALL DLACPY( 'F', M, M, SCPY, LDST, S, LDST )
545            CALL DLACPY( 'F', M, M, TCPY, LDST, T, LDST )
546            CALL DLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
547            CALL DLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
548         ELSE IF( BRQA21.GE.THRESH ) THEN
549            GO TO 70
550         END IF
551*
552*        Set lower triangle of B-part to zero
553*
554         CALL DLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
555*
556         IF( WANDS ) THEN
557*
558*           Strong stability test:
559*              F-norm((A-QL*S*QR**T, B-QL*T*QR**T)) <= O(EPS*F-norm((A,B)))
560*
561            CALL DLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
562     $                   M )
563            CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
564     $                  WORK, M )
565            CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
566     $                  WORK( M*M+1 ), M )
567            DSCALE = ZERO
568            DSUM = ONE
569            CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
570*
571            CALL DLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
572     $                   M )
573            CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
574     $                  WORK, M )
575            CALL DGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
576     $                  WORK( M*M+1 ), M )
577            CALL DLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
578            SS = DSCALE*SQRT( DSUM )
579            DTRONG = ( SS.LE.THRESH )
580            IF( .NOT.DTRONG )
581     $         GO TO 70
582*
583         END IF
584*
585*        If the swap is accepted ("weakly" and "strongly"), apply the
586*        transformations and set N1-by-N2 (2,1)-block to zero.
587*
588         CALL DLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
589*
590*        copy back M-by-M diagonal block starting at index J1 of (A, B)
591*
592         CALL DLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
593         CALL DLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
594         CALL DLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
595*
596*        Standardize existing 2-by-2 blocks.
597*
598         CALL DLASET( 'Full', M, M, ZERO, ZERO, WORK, M )
599         WORK( 1 ) = ONE
600         T( 1, 1 ) = ONE
601         IDUM = LWORK - M*M - 2
602         IF( N2.GT.1 ) THEN
603            CALL DLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
604     $                   WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
605            WORK( M+1 ) = -WORK( 2 )
606            WORK( M+2 ) = WORK( 1 )
607            T( N2, N2 ) = T( 1, 1 )
608            T( 1, 2 ) = -T( 2, 1 )
609         END IF
610         WORK( M*M ) = ONE
611         T( M, M ) = ONE
612*
613         IF( N1.GT.1 ) THEN
614            CALL DLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
615     $                   TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
616     $                   WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
617     $                   T( M, M-1 ) )
618            WORK( M*M ) = WORK( N2*M+N2+1 )
619            WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
620            T( M, M ) = T( N2+1, N2+1 )
621            T( M-1, M ) = -T( M, M-1 )
622         END IF
623         CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
624     $               LDA, ZERO, WORK( M*M+1 ), N2 )
625         CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
626     $                LDA )
627         CALL DGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
628     $               LDB, ZERO, WORK( M*M+1 ), N2 )
629         CALL DLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
630     $                LDB )
631         CALL DGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
632     $               WORK( M*M+1 ), M )
633         CALL DLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
634         CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
635     $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
636         CALL DLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
637         CALL DGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
638     $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
639         CALL DLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
640         CALL DGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
641     $               WORK, M )
642         CALL DLACPY( 'Full', M, M, WORK, M, IR, LDST )
643*
644*        Accumulate transformations into Q and Z if requested.
645*
646         IF( WANTQ ) THEN
647            CALL DGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
648     $                  LDST, ZERO, WORK, N )
649            CALL DLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
650*
651         END IF
652*
653         IF( WANTZ ) THEN
654            CALL DGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
655     $                  LDST, ZERO, WORK, N )
656            CALL DLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
657*
658         END IF
659*
660*        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
661*                (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
662*
663         I = J1 + M
664         IF( I.LE.N ) THEN
665            CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
666     $                  A( J1, I ), LDA, ZERO, WORK, M )
667            CALL DLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
668            CALL DGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
669     $                  B( J1, I ), LDB, ZERO, WORK, M )
670            CALL DLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
671         END IF
672         I = J1 - 1
673         IF( I.GT.0 ) THEN
674            CALL DGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
675     $                  LDST, ZERO, WORK, I )
676            CALL DLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
677            CALL DGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
678     $                  LDST, ZERO, WORK, I )
679            CALL DLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
680         END IF
681*
682*        Exit with INFO = 0 if swap was successfully performed.
683*
684         RETURN
685*
686      END IF
687*
688*     Exit with INFO = 1 if swap was rejected.
689*
690   70 CONTINUE
691*
692      INFO = 1
693      RETURN
694*
695*     End of DTGEX2
696*
697      END
698