1*> \brief <b> SSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
2*
3*  @generated from dsyevr_2stage.f, fortran d -> s, Sat Nov  5 23:50:10 2016
4*
5*  =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8*            http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download SSYEVR_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20*  Definition:
21*  ===========
22*
23*       SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
24*                          IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK,
25*                          LWORK, IWORK, LIWORK, INFO )
26*
27*       IMPLICIT NONE
28*
29*       .. Scalar Arguments ..
30*       CHARACTER          JOBZ, RANGE, UPLO
31*       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
32*       REAL               ABSTOL, VL, VU
33*       ..
34*       .. Array Arguments ..
35*       INTEGER            ISUPPZ( * ), IWORK( * )
36*       REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
37*       ..
38*
39*
40*> \par Purpose:
41*  =============
42*>
43*> \verbatim
44*>
45*> SSYEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors
46*> of a real symmetric matrix A using the 2stage technique for
47*> the reduction to tridiagonal.  Eigenvalues and eigenvectors can be
48*> selected by specifying either a range of values or a range of
49*> indices for the desired eigenvalues.
50*>
51*> SSYEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call
52*> to SSYTRD.  Then, whenever possible, SSYEVR_2STAGE calls SSTEMR to compute
53*> the eigenspectrum using Relatively Robust Representations.  SSTEMR
54*> computes eigenvalues by the dqds algorithm, while orthogonal
55*> eigenvectors are computed from various "good" L D L^T representations
56*> (also known as Relatively Robust Representations). Gram-Schmidt
57*> orthogonalization is avoided as far as possible. More specifically,
58*> the various steps of the algorithm are as follows.
59*>
60*> For each unreduced block (submatrix) of T,
61*>    (a) Compute T - sigma I  = L D L^T, so that L and D
62*>        define all the wanted eigenvalues to high relative accuracy.
63*>        This means that small relative changes in the entries of D and L
64*>        cause only small relative changes in the eigenvalues and
65*>        eigenvectors. The standard (unfactored) representation of the
66*>        tridiagonal matrix T does not have this property in general.
67*>    (b) Compute the eigenvalues to suitable accuracy.
68*>        If the eigenvectors are desired, the algorithm attains full
69*>        accuracy of the computed eigenvalues only right before
70*>        the corresponding vectors have to be computed, see steps c) and d).
71*>    (c) For each cluster of close eigenvalues, select a new
72*>        shift close to the cluster, find a new factorization, and refine
73*>        the shifted eigenvalues to suitable accuracy.
74*>    (d) For each eigenvalue with a large enough relative separation compute
75*>        the corresponding eigenvector by forming a rank revealing twisted
76*>        factorization. Go back to (c) for any clusters that remain.
77*>
78*> The desired accuracy of the output can be specified by the input
79*> parameter ABSTOL.
80*>
81*> For more details, see SSTEMR's documentation and:
82*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
83*>   to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
84*>   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
85*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
86*>   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
87*>   2004.  Also LAPACK Working Note 154.
88*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
89*>   tridiagonal eigenvalue/eigenvector problem",
90*>   Computer Science Division Technical Report No. UCB/CSD-97-971,
91*>   UC Berkeley, May 1997.
92*>
93*>
94*> Note 1 : SSYEVR_2STAGE calls SSTEMR when the full spectrum is requested
95*> on machines which conform to the ieee-754 floating point standard.
96*> SSYEVR_2STAGE calls SSTEBZ and SSTEIN on non-ieee machines and
97*> when partial spectrum requests are made.
98*>
99*> Normal execution of SSTEMR may create NaNs and infinities and
100*> hence may abort due to a floating point exception in environments
101*> which do not handle NaNs and infinities in the ieee standard default
102*> manner.
103*> \endverbatim
104*
105*  Arguments:
106*  ==========
107*
108*> \param[in] JOBZ
109*> \verbatim
110*>          JOBZ is CHARACTER*1
111*>          = 'N':  Compute eigenvalues only;
112*>          = 'V':  Compute eigenvalues and eigenvectors.
113*>                  Not available in this release.
114*> \endverbatim
115*>
116*> \param[in] RANGE
117*> \verbatim
118*>          RANGE is CHARACTER*1
119*>          = 'A': all eigenvalues will be found.
120*>          = 'V': all eigenvalues in the half-open interval (VL,VU]
121*>                 will be found.
122*>          = 'I': the IL-th through IU-th eigenvalues will be found.
123*>          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
124*>          SSTEIN are called
125*> \endverbatim
126*>
127*> \param[in] UPLO
128*> \verbatim
129*>          UPLO is CHARACTER*1
130*>          = 'U':  Upper triangle of A is stored;
131*>          = 'L':  Lower triangle of A is stored.
132*> \endverbatim
133*>
134*> \param[in] N
135*> \verbatim
136*>          N is INTEGER
137*>          The order of the matrix A.  N >= 0.
138*> \endverbatim
139*>
140*> \param[in,out] A
141*> \verbatim
142*>          A is REAL array, dimension (LDA, N)
143*>          On entry, the symmetric matrix A.  If UPLO = 'U', the
144*>          leading N-by-N upper triangular part of A contains the
145*>          upper triangular part of the matrix A.  If UPLO = 'L',
146*>          the leading N-by-N lower triangular part of A contains
147*>          the lower triangular part of the matrix A.
148*>          On exit, the lower triangle (if UPLO='L') or the upper
149*>          triangle (if UPLO='U') of A, including the diagonal, is
150*>          destroyed.
151*> \endverbatim
152*>
153*> \param[in] LDA
154*> \verbatim
155*>          LDA is INTEGER
156*>          The leading dimension of the array A.  LDA >= max(1,N).
157*> \endverbatim
158*>
159*> \param[in] VL
160*> \verbatim
161*>          VL is REAL
162*>          If RANGE='V', the lower bound of the interval to
163*>          be searched for eigenvalues. VL < VU.
164*>          Not referenced if RANGE = 'A' or 'I'.
165*> \endverbatim
166*>
167*> \param[in] VU
168*> \verbatim
169*>          VU is REAL
170*>          If RANGE='V', the upper bound of the interval to
171*>          be searched for eigenvalues. VL < VU.
172*>          Not referenced if RANGE = 'A' or 'I'.
173*> \endverbatim
174*>
175*> \param[in] IL
176*> \verbatim
177*>          IL is INTEGER
178*>          If RANGE='I', the index of the
179*>          smallest eigenvalue to be returned.
180*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
181*>          Not referenced if RANGE = 'A' or 'V'.
182*> \endverbatim
183*>
184*> \param[in] IU
185*> \verbatim
186*>          IU is INTEGER
187*>          If RANGE='I', the index of the
188*>          largest eigenvalue to be returned.
189*>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
190*>          Not referenced if RANGE = 'A' or 'V'.
191*> \endverbatim
192*>
193*> \param[in] ABSTOL
194*> \verbatim
195*>          ABSTOL is REAL
196*>          The absolute error tolerance for the eigenvalues.
197*>          An approximate eigenvalue is accepted as converged
198*>          when it is determined to lie in an interval [a,b]
199*>          of width less than or equal to
200*>
201*>                  ABSTOL + EPS *   max( |a|,|b| ) ,
202*>
203*>          where EPS is the machine precision.  If ABSTOL is less than
204*>          or equal to zero, then  EPS*|T|  will be used in its place,
205*>          where |T| is the 1-norm of the tridiagonal matrix obtained
206*>          by reducing A to tridiagonal form.
207*>
208*>          See "Computing Small Singular Values of Bidiagonal Matrices
209*>          with Guaranteed High Relative Accuracy," by Demmel and
210*>          Kahan, LAPACK Working Note #3.
211*>
212*>          If high relative accuracy is important, set ABSTOL to
213*>          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that
214*>          eigenvalues are computed to high relative accuracy when
215*>          possible in future releases.  The current code does not
216*>          make any guarantees about high relative accuracy, but
217*>          future releases will. See J. Barlow and J. Demmel,
218*>          "Computing Accurate Eigensystems of Scaled Diagonally
219*>          Dominant Matrices", LAPACK Working Note #7, for a discussion
220*>          of which matrices define their eigenvalues to high relative
221*>          accuracy.
222*> \endverbatim
223*>
224*> \param[out] M
225*> \verbatim
226*>          M is INTEGER
227*>          The total number of eigenvalues found.  0 <= M <= N.
228*>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
229*> \endverbatim
230*>
231*> \param[out] W
232*> \verbatim
233*>          W is REAL array, dimension (N)
234*>          The first M elements contain the selected eigenvalues in
235*>          ascending order.
236*> \endverbatim
237*>
238*> \param[out] Z
239*> \verbatim
240*>          Z is REAL array, dimension (LDZ, max(1,M))
241*>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
242*>          contain the orthonormal eigenvectors of the matrix A
243*>          corresponding to the selected eigenvalues, with the i-th
244*>          column of Z holding the eigenvector associated with W(i).
245*>          If JOBZ = 'N', then Z is not referenced.
246*>          Note: the user must ensure that at least max(1,M) columns are
247*>          supplied in the array Z; if RANGE = 'V', the exact value of M
248*>          is not known in advance and an upper bound must be used.
249*>          Supplying N columns is always safe.
250*> \endverbatim
251*>
252*> \param[in] LDZ
253*> \verbatim
254*>          LDZ is INTEGER
255*>          The leading dimension of the array Z.  LDZ >= 1, and if
256*>          JOBZ = 'V', LDZ >= max(1,N).
257*> \endverbatim
258*>
259*> \param[out] ISUPPZ
260*> \verbatim
261*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
262*>          The support of the eigenvectors in Z, i.e., the indices
263*>          indicating the nonzero elements in Z. The i-th eigenvector
264*>          is nonzero only in elements ISUPPZ( 2*i-1 ) through
265*>          ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal
266*>          matrix). The support of the eigenvectors of A is typically
267*>          1:N because of the orthogonal transformations applied by SORMTR.
268*>          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
269*> \endverbatim
270*>
271*> \param[out] WORK
272*> \verbatim
273*>          WORK is REAL array, dimension (MAX(1,LWORK))
274*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
275*> \endverbatim
276*>
277*> \param[in] LWORK
278*> \verbatim
279*>          LWORK is INTEGER
280*>          The dimension of the array WORK.
281*>          If JOBZ = 'N' and N > 1, LWORK must be queried.
282*>                                   LWORK = MAX(1, 26*N, dimension) where
283*>                                   dimension = max(stage1,stage2) + (KD+1)*N + 5*N
284*>                                             = N*KD + N*max(KD+1,FACTOPTNB)
285*>                                               + max(2*KD*KD, KD*NTHREADS)
286*>                                               + (KD+1)*N + 5*N
287*>                                   where KD is the blocking size of the reduction,
288*>                                   FACTOPTNB is the blocking used by the QR or LQ
289*>                                   algorithm, usually FACTOPTNB=128 is a good choice
290*>                                   NTHREADS is the number of threads used when
291*>                                   openMP compilation is enabled, otherwise =1.
292*>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
293*>
294*>          If LWORK = -1, then a workspace query is assumed; the routine
295*>          only calculates the optimal size of the WORK array, returns
296*>          this value as the first entry of the WORK array, and no error
297*>          message related to LWORK is issued by XERBLA.
298*> \endverbatim
299*>
300*> \param[out] IWORK
301*> \verbatim
302*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
303*>          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
304*> \endverbatim
305*>
306*> \param[in] LIWORK
307*> \verbatim
308*>          LIWORK is INTEGER
309*>          The dimension of the array IWORK.  LIWORK >= max(1,10*N).
310*>
311*>          If LIWORK = -1, then a workspace query is assumed; the
312*>          routine only calculates the optimal size of the IWORK array,
313*>          returns this value as the first entry of the IWORK array, and
314*>          no error message related to LIWORK is issued by XERBLA.
315*> \endverbatim
316*>
317*> \param[out] INFO
318*> \verbatim
319*>          INFO is INTEGER
320*>          = 0:  successful exit
321*>          < 0:  if INFO = -i, the i-th argument had an illegal value
322*>          > 0:  Internal error
323*> \endverbatim
324*
325*  Authors:
326*  ========
327*
328*> \author Univ. of Tennessee
329*> \author Univ. of California Berkeley
330*> \author Univ. of Colorado Denver
331*> \author NAG Ltd.
332*
333*> \date June 2016
334*
335*> \ingroup realSYeigen
336*
337*> \par Contributors:
338*  ==================
339*>
340*>     Inderjit Dhillon, IBM Almaden, USA \n
341*>     Osni Marques, LBNL/NERSC, USA \n
342*>     Ken Stanley, Computer Science Division, University of
343*>       California at Berkeley, USA \n
344*>     Jason Riedy, Computer Science Division, University of
345*>       California at Berkeley, USA \n
346*>
347*> \par Further Details:
348*  =====================
349*>
350*> \verbatim
351*>
352*>  All details about the 2stage techniques are available in:
353*>
354*>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
355*>  Parallel reduction to condensed forms for symmetric eigenvalue problems
356*>  using aggregated fine-grained and memory-aware kernels. In Proceedings
357*>  of 2011 International Conference for High Performance Computing,
358*>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
359*>  Article 8 , 11 pages.
360*>  http://doi.acm.org/10.1145/2063384.2063394
361*>
362*>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
363*>  An improved parallel singular value algorithm and its implementation
364*>  for multicore hardware, In Proceedings of 2013 International Conference
365*>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
366*>  Denver, Colorado, USA, 2013.
367*>  Article 90, 12 pages.
368*>  http://doi.acm.org/10.1145/2503210.2503292
369*>
370*>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
371*>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure
372*>  calculations based on fine-grained memory aware tasks.
373*>  International Journal of High Performance Computing Applications.
374*>  Volume 28 Issue 2, Pages 196-209, May 2014.
375*>  http://hpc.sagepub.com/content/28/2/196
376*>
377*> \endverbatim
378*
379*  =====================================================================
380      SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
381     $                   IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK,
382     $                   LWORK, IWORK, LIWORK, INFO )
383*
384      IMPLICIT NONE
385*
386*  -- LAPACK driver routine (version 3.8.0) --
387*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
388*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
389*     June 2016
390*
391*     .. Scalar Arguments ..
392      CHARACTER          JOBZ, RANGE, UPLO
393      INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
394      REAL               ABSTOL, VL, VU
395*     ..
396*     .. Array Arguments ..
397      INTEGER            ISUPPZ( * ), IWORK( * )
398      REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
399*     ..
400*
401* =====================================================================
402*
403*     .. Parameters ..
404      REAL               ZERO, ONE, TWO
405      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0 )
406*     ..
407*     .. Local Scalars ..
408      LOGICAL            ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
409     $                   TRYRAC, TEST
410      CHARACTER          ORDER
411      INTEGER            I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
412     $                   INDEE, INDIBL, INDIFL, INDISP, INDIWO, INDTAU,
413     $                   INDWK, INDWKN, ISCALE, J, JJ, LIWMIN,
414     $                   LLWORK, LLWRKN, LWMIN, NSPLIT,
415     $                   LHTRD, LWTRD, KD, IB, INDHOUS
416      REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
417     $                   SIGMA, SMLNUM, TMP1, VLL, VUU
418*     ..
419*     .. External Functions ..
420      LOGICAL            LSAME
421      INTEGER            ILAENV, ILAENV2STAGE
422      REAL               SLAMCH, SLANSY
423      EXTERNAL           LSAME, SLAMCH, SLANSY, ILAENV, ILAENV2STAGE
424*     ..
425*     .. External Subroutines ..
426      EXTERNAL           SCOPY, SORMTR, SSCAL, SSTEBZ, SSTEMR, SSTEIN,
427     $                   SSTERF, SSWAP, SSYTRD_2STAGE, XERBLA
428*     ..
429*     .. Intrinsic Functions ..
430      INTRINSIC          MAX, MIN, SQRT
431*     ..
432*     .. Executable Statements ..
433*
434*     Test the input parameters.
435*
436      IEEEOK = ILAENV( 10, 'SSYEVR', 'N', 1, 2, 3, 4 )
437*
438      LOWER = LSAME( UPLO, 'L' )
439      WANTZ = LSAME( JOBZ, 'V' )
440      ALLEIG = LSAME( RANGE, 'A' )
441      VALEIG = LSAME( RANGE, 'V' )
442      INDEIG = LSAME( RANGE, 'I' )
443*
444      LQUERY = ( ( LWORK.EQ.-1 ) .OR. ( LIWORK.EQ.-1 ) )
445*
446      KD     = ILAENV2STAGE( 1, 'SSYTRD_2STAGE', JOBZ, N, -1, -1, -1 )
447      IB     = ILAENV2STAGE( 2, 'SSYTRD_2STAGE', JOBZ, N, KD, -1, -1 )
448      LHTRD  = ILAENV2STAGE( 3, 'SSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
449      LWTRD  = ILAENV2STAGE( 4, 'SSYTRD_2STAGE', JOBZ, N, KD, IB, -1 )
450      LWMIN  = MAX( 26*N, 5*N + LHTRD + LWTRD )
451      LIWMIN = MAX( 1, 10*N )
452*
453      INFO = 0
454      IF( .NOT.( LSAME( JOBZ, 'N' ) ) ) THEN
455         INFO = -1
456      ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
457         INFO = -2
458      ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
459         INFO = -3
460      ELSE IF( N.LT.0 ) THEN
461         INFO = -4
462      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
463         INFO = -6
464      ELSE
465         IF( VALEIG ) THEN
466            IF( N.GT.0 .AND. VU.LE.VL )
467     $         INFO = -8
468         ELSE IF( INDEIG ) THEN
469            IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
470               INFO = -9
471            ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
472               INFO = -10
473            END IF
474         END IF
475      END IF
476      IF( INFO.EQ.0 ) THEN
477         IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
478            INFO = -15
479         ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
480            INFO = -18
481         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
482            INFO = -20
483         END IF
484      END IF
485*
486      IF( INFO.EQ.0 ) THEN
487*         NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
488*         NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) )
489*         LWKOPT = MAX( ( NB+1 )*N, LWMIN )
490         WORK( 1 ) = LWMIN
491         IWORK( 1 ) = LIWMIN
492      END IF
493*
494      IF( INFO.NE.0 ) THEN
495         CALL XERBLA( 'SSYEVR_2STAGE', -INFO )
496         RETURN
497      ELSE IF( LQUERY ) THEN
498         RETURN
499      END IF
500*
501*     Quick return if possible
502*
503      M = 0
504      IF( N.EQ.0 ) THEN
505         WORK( 1 ) = 1
506         RETURN
507      END IF
508*
509      IF( N.EQ.1 ) THEN
510         WORK( 1 ) = 26
511         IF( ALLEIG .OR. INDEIG ) THEN
512            M = 1
513            W( 1 ) = A( 1, 1 )
514         ELSE
515            IF( VL.LT.A( 1, 1 ) .AND. VU.GE.A( 1, 1 ) ) THEN
516               M = 1
517               W( 1 ) = A( 1, 1 )
518            END IF
519         END IF
520         IF( WANTZ ) THEN
521            Z( 1, 1 ) = ONE
522            ISUPPZ( 1 ) = 1
523            ISUPPZ( 2 ) = 1
524         END IF
525         RETURN
526      END IF
527*
528*     Get machine constants.
529*
530      SAFMIN = SLAMCH( 'Safe minimum' )
531      EPS    = SLAMCH( 'Precision' )
532      SMLNUM = SAFMIN / EPS
533      BIGNUM = ONE / SMLNUM
534      RMIN   = SQRT( SMLNUM )
535      RMAX   = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
536*
537*     Scale matrix to allowable range, if necessary.
538*
539      ISCALE = 0
540      ABSTLL = ABSTOL
541      IF (VALEIG) THEN
542         VLL = VL
543         VUU = VU
544      END IF
545      ANRM = SLANSY( 'M', UPLO, N, A, LDA, WORK )
546      IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
547         ISCALE = 1
548         SIGMA = RMIN / ANRM
549      ELSE IF( ANRM.GT.RMAX ) THEN
550         ISCALE = 1
551         SIGMA = RMAX / ANRM
552      END IF
553      IF( ISCALE.EQ.1 ) THEN
554         IF( LOWER ) THEN
555            DO 10 J = 1, N
556               CALL SSCAL( N-J+1, SIGMA, A( J, J ), 1 )
557   10       CONTINUE
558         ELSE
559            DO 20 J = 1, N
560               CALL SSCAL( J, SIGMA, A( 1, J ), 1 )
561   20       CONTINUE
562         END IF
563         IF( ABSTOL.GT.0 )
564     $      ABSTLL = ABSTOL*SIGMA
565         IF( VALEIG ) THEN
566            VLL = VL*SIGMA
567            VUU = VU*SIGMA
568         END IF
569      END IF
570
571*     Initialize indices into workspaces.  Note: The IWORK indices are
572*     used only if SSTERF or SSTEMR fail.
573
574*     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
575*     elementary reflectors used in SSYTRD.
576      INDTAU = 1
577*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
578      INDD = INDTAU + N
579*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
580*     tridiagonal matrix from SSYTRD.
581      INDE = INDD + N
582*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
583*     -written by SSTEMR (the SSTERF path copies the diagonal to W).
584      INDDD = INDE + N
585*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
586*     -written while computing the eigenvalues in SSTERF and SSTEMR.
587      INDEE = INDDD + N
588*     INDHOUS is the starting offset Householder storage of stage 2
589      INDHOUS = INDEE + N
590*     INDWK is the starting offset of the left-over workspace, and
591*     LLWORK is the remaining workspace size.
592      INDWK  = INDHOUS + LHTRD
593      LLWORK = LWORK - INDWK + 1
594
595
596*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
597*     stores the block indices of each of the M<=N eigenvalues.
598      INDIBL = 1
599*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
600*     stores the starting and finishing indices of each block.
601      INDISP = INDIBL + N
602*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
603*     that corresponding to eigenvectors that fail to converge in
604*     SSTEIN.  This information is discarded; if any fail, the driver
605*     returns INFO > 0.
606      INDIFL = INDISP + N
607*     INDIWO is the offset of the remaining integer workspace.
608      INDIWO = INDIFL + N
609
610*
611*     Call SSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
612*
613*
614      CALL SSYTRD_2STAGE( JOBZ, UPLO, N, A, LDA, WORK( INDD ),
615     $                    WORK( INDE ), WORK( INDTAU ), WORK( INDHOUS ),
616     $                    LHTRD, WORK( INDWK ), LLWORK, IINFO )
617*
618*     If all eigenvalues are desired
619*     then call SSTERF or SSTEMR and SORMTR.
620*
621      TEST = .FALSE.
622      IF( INDEIG ) THEN
623         IF( IL.EQ.1 .AND. IU.EQ.N ) THEN
624            TEST = .TRUE.
625         END IF
626      END IF
627      IF( ( ALLEIG.OR.TEST ) .AND. ( IEEEOK.EQ.1 ) ) THEN
628         IF( .NOT.WANTZ ) THEN
629            CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
630            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
631            CALL SSTERF( N, W, WORK( INDEE ), INFO )
632         ELSE
633            CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
634            CALL SCOPY( N, WORK( INDD ), 1, WORK( INDDD ), 1 )
635*
636            IF (ABSTOL .LE. TWO*N*EPS) THEN
637               TRYRAC = .TRUE.
638            ELSE
639               TRYRAC = .FALSE.
640            END IF
641            CALL SSTEMR( JOBZ, 'A', N, WORK( INDDD ), WORK( INDEE ),
642     $                   VL, VU, IL, IU, M, W, Z, LDZ, N, ISUPPZ,
643     $                   TRYRAC, WORK( INDWK ), LWORK, IWORK, LIWORK,
644     $                   INFO )
645*
646*
647*
648*        Apply orthogonal matrix used in reduction to tridiagonal
649*        form to eigenvectors returned by SSTEMR.
650*
651            IF( WANTZ .AND. INFO.EQ.0 ) THEN
652               INDWKN = INDE
653               LLWRKN = LWORK - INDWKN + 1
654               CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA,
655     $                      WORK( INDTAU ), Z, LDZ, WORK( INDWKN ),
656     $                      LLWRKN, IINFO )
657            END IF
658         END IF
659*
660*
661         IF( INFO.EQ.0 ) THEN
662*           Everything worked.  Skip SSTEBZ/SSTEIN.  IWORK(:) are
663*           undefined.
664            M = N
665            GO TO 30
666         END IF
667         INFO = 0
668      END IF
669*
670*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
671*     Also call SSTEBZ and SSTEIN if SSTEMR fails.
672*
673      IF( WANTZ ) THEN
674         ORDER = 'B'
675      ELSE
676         ORDER = 'E'
677      END IF
678
679      CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
680     $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
681     $             IWORK( INDIBL ), IWORK( INDISP ), WORK( INDWK ),
682     $             IWORK( INDIWO ), INFO )
683*
684      IF( WANTZ ) THEN
685         CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
686     $                IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
687     $                WORK( INDWK ), IWORK( INDIWO ), IWORK( INDIFL ),
688     $                INFO )
689*
690*        Apply orthogonal matrix used in reduction to tridiagonal
691*        form to eigenvectors returned by SSTEIN.
692*
693         INDWKN = INDE
694         LLWRKN = LWORK - INDWKN + 1
695         CALL SORMTR( 'L', UPLO, 'N', N, M, A, LDA, WORK( INDTAU ), Z,
696     $                LDZ, WORK( INDWKN ), LLWRKN, IINFO )
697      END IF
698*
699*     If matrix was scaled, then rescale eigenvalues appropriately.
700*
701*  Jump here if SSTEMR/SSTEIN succeeded.
702   30 CONTINUE
703      IF( ISCALE.EQ.1 ) THEN
704         IF( INFO.EQ.0 ) THEN
705            IMAX = M
706         ELSE
707            IMAX = INFO - 1
708         END IF
709         CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
710      END IF
711*
712*     If eigenvalues are not in order, then sort them, along with
713*     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK.
714*     It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do
715*     not return this detailed information to the user.
716*
717      IF( WANTZ ) THEN
718         DO 50 J = 1, M - 1
719            I = 0
720            TMP1 = W( J )
721            DO 40 JJ = J + 1, M
722               IF( W( JJ ).LT.TMP1 ) THEN
723                  I = JJ
724                  TMP1 = W( JJ )
725               END IF
726   40       CONTINUE
727*
728            IF( I.NE.0 ) THEN
729               W( I ) = W( J )
730               W( J ) = TMP1
731               CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
732            END IF
733   50    CONTINUE
734      END IF
735*
736*     Set WORK(1) to optimal workspace size.
737*
738      WORK( 1 ) = LWMIN
739      IWORK( 1 ) = LIWMIN
740*
741      RETURN
742*
743*     End of SSYEVR_2STAGE
744*
745      END
746