1*> \brief \b ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenvalues of L D LT.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLARRV + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarrv.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarrv.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarrv.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
22*                          ISPLIT, M, DOL, DOU, MINRGP,
23*                          RTOL1, RTOL2, W, WERR, WGAP,
24*                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
25*                          WORK, IWORK, INFO )
26*
27*       .. Scalar Arguments ..
28*       INTEGER            DOL, DOU, INFO, LDZ, M, N
29*       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
30*       ..
31*       .. Array Arguments ..
32*       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
33*      $                   ISUPPZ( * ), IWORK( * )
34*       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
35*      $                   WGAP( * ), WORK( * )
36*       COMPLEX*16        Z( LDZ, * )
37*       ..
38*
39*
40*> \par Purpose:
41*  =============
42*>
43*> \verbatim
44*>
45*> ZLARRV computes the eigenvectors of the tridiagonal matrix
46*> T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T.
47*> The input eigenvalues should have been computed by DLARRE.
48*> \endverbatim
49*
50*  Arguments:
51*  ==========
52*
53*> \param[in] N
54*> \verbatim
55*>          N is INTEGER
56*>          The order of the matrix.  N >= 0.
57*> \endverbatim
58*>
59*> \param[in] VL
60*> \verbatim
61*>          VL is DOUBLE PRECISION
62*>          Lower bound of the interval that contains the desired
63*>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
64*>          end of the extremal eigenvalues in the desired RANGE.
65*> \endverbatim
66*>
67*> \param[in] VU
68*> \verbatim
69*>          VU is DOUBLE PRECISION
70*>          Upper bound of the interval that contains the desired
71*>          eigenvalues. VL < VU. Needed to compute gaps on the left or right
72*>          end of the extremal eigenvalues in the desired RANGE.
73*> \endverbatim
74*>
75*> \param[in,out] D
76*> \verbatim
77*>          D is DOUBLE PRECISION array, dimension (N)
78*>          On entry, the N diagonal elements of the diagonal matrix D.
79*>          On exit, D may be overwritten.
80*> \endverbatim
81*>
82*> \param[in,out] L
83*> \verbatim
84*>          L is DOUBLE PRECISION array, dimension (N)
85*>          On entry, the (N-1) subdiagonal elements of the unit
86*>          bidiagonal matrix L are in elements 1 to N-1 of L
87*>          (if the matrix is not split.) At the end of each block
88*>          is stored the corresponding shift as given by DLARRE.
89*>          On exit, L is overwritten.
90*> \endverbatim
91*>
92*> \param[in] PIVMIN
93*> \verbatim
94*>          PIVMIN is DOUBLE PRECISION
95*>          The minimum pivot allowed in the Sturm sequence.
96*> \endverbatim
97*>
98*> \param[in] ISPLIT
99*> \verbatim
100*>          ISPLIT is INTEGER array, dimension (N)
101*>          The splitting points, at which T breaks up into blocks.
102*>          The first block consists of rows/columns 1 to
103*>          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1
104*>          through ISPLIT( 2 ), etc.
105*> \endverbatim
106*>
107*> \param[in] M
108*> \verbatim
109*>          M is INTEGER
110*>          The total number of input eigenvalues.  0 <= M <= N.
111*> \endverbatim
112*>
113*> \param[in] DOL
114*> \verbatim
115*>          DOL is INTEGER
116*> \endverbatim
117*>
118*> \param[in] DOU
119*> \verbatim
120*>          DOU is INTEGER
121*>          If the user wants to compute only selected eigenvectors from all
122*>          the eigenvalues supplied, he can specify an index range DOL:DOU.
123*>          Or else the setting DOL=1, DOU=M should be applied.
124*>          Note that DOL and DOU refer to the order in which the eigenvalues
125*>          are stored in W.
126*>          If the user wants to compute only selected eigenpairs, then
127*>          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the
128*>          computed eigenvectors. All other columns of Z are set to zero.
129*> \endverbatim
130*>
131*> \param[in] MINRGP
132*> \verbatim
133*>          MINRGP is DOUBLE PRECISION
134*> \endverbatim
135*>
136*> \param[in] RTOL1
137*> \verbatim
138*>          RTOL1 is DOUBLE PRECISION
139*> \endverbatim
140*>
141*> \param[in] RTOL2
142*> \verbatim
143*>          RTOL2 is DOUBLE PRECISION
144*>           Parameters for bisection.
145*>           An interval [LEFT,RIGHT] has converged if
146*>           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) )
147*> \endverbatim
148*>
149*> \param[in,out] W
150*> \verbatim
151*>          W is DOUBLE PRECISION array, dimension (N)
152*>          The first M elements of W contain the APPROXIMATE eigenvalues for
153*>          which eigenvectors are to be computed.  The eigenvalues
154*>          should be grouped by split-off block and ordered from
155*>          smallest to largest within the block ( The output array
156*>          W from DLARRE is expected here ). Furthermore, they are with
157*>          respect to the shift of the corresponding root representation
158*>          for their block. On exit, W holds the eigenvalues of the
159*>          UNshifted matrix.
160*> \endverbatim
161*>
162*> \param[in,out] WERR
163*> \verbatim
164*>          WERR is DOUBLE PRECISION array, dimension (N)
165*>          The first M elements contain the semiwidth of the uncertainty
166*>          interval of the corresponding eigenvalue in W
167*> \endverbatim
168*>
169*> \param[in,out] WGAP
170*> \verbatim
171*>          WGAP is DOUBLE PRECISION array, dimension (N)
172*>          The separation from the right neighbor eigenvalue in W.
173*> \endverbatim
174*>
175*> \param[in] IBLOCK
176*> \verbatim
177*>          IBLOCK is INTEGER array, dimension (N)
178*>          The indices of the blocks (submatrices) associated with the
179*>          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue
180*>          W(i) belongs to the first block from the top, =2 if W(i)
181*>          belongs to the second block, etc.
182*> \endverbatim
183*>
184*> \param[in] INDEXW
185*> \verbatim
186*>          INDEXW is INTEGER array, dimension (N)
187*>          The indices of the eigenvalues within each block (submatrix);
188*>          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the
189*>          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block.
190*> \endverbatim
191*>
192*> \param[in] GERS
193*> \verbatim
194*>          GERS is DOUBLE PRECISION array, dimension (2*N)
195*>          The N Gerschgorin intervals (the i-th Gerschgorin interval
196*>          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should
197*>          be computed from the original UNshifted matrix.
198*> \endverbatim
199*>
200*> \param[out] Z
201*> \verbatim
202*>          Z is COMPLEX*16 array, dimension (LDZ, max(1,M) )
203*>          If INFO = 0, the first M columns of Z contain the
204*>          orthonormal eigenvectors of the matrix T
205*>          corresponding to the input eigenvalues, with the i-th
206*>          column of Z holding the eigenvector associated with W(i).
207*>          Note: the user must ensure that at least max(1,M) columns are
208*>          supplied in the array Z.
209*> \endverbatim
210*>
211*> \param[in] LDZ
212*> \verbatim
213*>          LDZ is INTEGER
214*>          The leading dimension of the array Z.  LDZ >= 1, and if
215*>          JOBZ = 'V', LDZ >= max(1,N).
216*> \endverbatim
217*>
218*> \param[out] ISUPPZ
219*> \verbatim
220*>          ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
221*>          The support of the eigenvectors in Z, i.e., the indices
222*>          indicating the nonzero elements in Z. The I-th eigenvector
223*>          is nonzero only in elements ISUPPZ( 2*I-1 ) through
224*>          ISUPPZ( 2*I ).
225*> \endverbatim
226*>
227*> \param[out] WORK
228*> \verbatim
229*>          WORK is DOUBLE PRECISION array, dimension (12*N)
230*> \endverbatim
231*>
232*> \param[out] IWORK
233*> \verbatim
234*>          IWORK is INTEGER array, dimension (7*N)
235*> \endverbatim
236*>
237*> \param[out] INFO
238*> \verbatim
239*>          INFO is INTEGER
240*>          = 0:  successful exit
241*>
242*>          > 0:  A problem occurred in ZLARRV.
243*>          < 0:  One of the called subroutines signaled an internal problem.
244*>                Needs inspection of the corresponding parameter IINFO
245*>                for further information.
246*>
247*>          =-1:  Problem in DLARRB when refining a child's eigenvalues.
248*>          =-2:  Problem in DLARRF when computing the RRR of a child.
249*>                When a child is inside a tight cluster, it can be difficult
250*>                to find an RRR. A partial remedy from the user's point of
251*>                view is to make the parameter MINRGP smaller and recompile.
252*>                However, as the orthogonality of the computed vectors is
253*>                proportional to 1/MINRGP, the user should be aware that
254*>                he might be trading in precision when he decreases MINRGP.
255*>          =-3:  Problem in DLARRB when refining a single eigenvalue
256*>                after the Rayleigh correction was rejected.
257*>          = 5:  The Rayleigh Quotient Iteration failed to converge to
258*>                full accuracy in MAXITR steps.
259*> \endverbatim
260*
261*  Authors:
262*  ========
263*
264*> \author Univ. of Tennessee
265*> \author Univ. of California Berkeley
266*> \author Univ. of Colorado Denver
267*> \author NAG Ltd.
268*
269*> \date June 2016
270*
271*> \ingroup complex16OTHERauxiliary
272*
273*> \par Contributors:
274*  ==================
275*>
276*> Beresford Parlett, University of California, Berkeley, USA \n
277*> Jim Demmel, University of California, Berkeley, USA \n
278*> Inderjit Dhillon, University of Texas, Austin, USA \n
279*> Osni Marques, LBNL/NERSC, USA \n
280*> Christof Voemel, University of California, Berkeley, USA
281*
282*  =====================================================================
283      SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN,
284     $                   ISPLIT, M, DOL, DOU, MINRGP,
285     $                   RTOL1, RTOL2, W, WERR, WGAP,
286     $                   IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ,
287     $                   WORK, IWORK, INFO )
288*
289*  -- LAPACK auxiliary routine (version 3.7.1) --
290*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
291*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
292*     June 2016
293*
294*     .. Scalar Arguments ..
295      INTEGER            DOL, DOU, INFO, LDZ, M, N
296      DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU
297*     ..
298*     .. Array Arguments ..
299      INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ),
300     $                   ISUPPZ( * ), IWORK( * )
301      DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ),
302     $                   WGAP( * ), WORK( * )
303      COMPLEX*16        Z( LDZ, * )
304*     ..
305*
306*  =====================================================================
307*
308*     .. Parameters ..
309      INTEGER            MAXITR
310      PARAMETER          ( MAXITR = 10 )
311      COMPLEX*16         CZERO
312      PARAMETER          ( CZERO = ( 0.0D0, 0.0D0 ) )
313      DOUBLE PRECISION   ZERO, ONE, TWO, THREE, FOUR, HALF
314      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0,
315     $                     TWO = 2.0D0, THREE = 3.0D0,
316     $                     FOUR = 4.0D0, HALF = 0.5D0)
317*     ..
318*     .. Local Scalars ..
319      LOGICAL            ESKIP, NEEDBS, STP2II, TRYRQC, USEDBS, USEDRQ
320      INTEGER            DONE, I, IBEGIN, IDONE, IEND, II, IINDC1,
321     $                   IINDC2, IINDR, IINDWK, IINFO, IM, IN, INDEIG,
322     $                   INDLD, INDLLD, INDWRK, ISUPMN, ISUPMX, ITER,
323     $                   ITMP1, J, JBLK, K, MINIWSIZE, MINWSIZE, NCLUS,
324     $                   NDEPTH, NEGCNT, NEWCLS, NEWFST, NEWFTT, NEWLST,
325     $                   NEWSIZ, OFFSET, OLDCLS, OLDFST, OLDIEN, OLDLST,
326     $                   OLDNCL, P, PARITY, Q, WBEGIN, WEND, WINDEX,
327     $                   WINDMN, WINDPL, ZFROM, ZTO, ZUSEDL, ZUSEDU,
328     $                   ZUSEDW
329      INTEGER            INDIN1, INDIN2
330      DOUBLE PRECISION   BSTRES, BSTW, EPS, FUDGE, GAP, GAPTOL, GL, GU,
331     $                   LAMBDA, LEFT, LGAP, MINGMA, NRMINV, RESID,
332     $                   RGAP, RIGHT, RQCORR, RQTOL, SAVGAP, SGNDEF,
333     $                   SIGMA, SPDIAM, SSIGMA, TAU, TMP, TOL, ZTZ
334*     ..
335*     .. External Functions ..
336      DOUBLE PRECISION   DLAMCH
337      EXTERNAL           DLAMCH
338*     ..
339*     .. External Subroutines ..
340      EXTERNAL           DCOPY, DLARRB, DLARRF, ZDSCAL, ZLAR1V,
341     $                   ZLASET
342*     ..
343*     .. Intrinsic Functions ..
344      INTRINSIC ABS, DBLE, MAX, MIN
345      INTRINSIC DCMPLX
346*     ..
347*     .. Executable Statements ..
348*     ..
349
350      INFO = 0
351*
352*     Quick return if possible
353*
354      IF( (N.LE.0).OR.(M.LE.0) ) THEN
355         RETURN
356      END IF
357*
358*     The first N entries of WORK are reserved for the eigenvalues
359      INDLD = N+1
360      INDLLD= 2*N+1
361      INDIN1 = 3*N + 1
362      INDIN2 = 4*N + 1
363      INDWRK = 5*N + 1
364      MINWSIZE = 12 * N
365
366      DO 5 I= 1,MINWSIZE
367         WORK( I ) = ZERO
368 5    CONTINUE
369
370*     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the
371*     factorization used to compute the FP vector
372      IINDR = 0
373*     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current
374*     layer and the one above.
375      IINDC1 = N
376      IINDC2 = 2*N
377      IINDWK = 3*N + 1
378
379      MINIWSIZE = 7 * N
380      DO 10 I= 1,MINIWSIZE
381         IWORK( I ) = 0
382 10   CONTINUE
383
384      ZUSEDL = 1
385      IF(DOL.GT.1) THEN
386*        Set lower bound for use of Z
387         ZUSEDL = DOL-1
388      ENDIF
389      ZUSEDU = M
390      IF(DOU.LT.M) THEN
391*        Set lower bound for use of Z
392         ZUSEDU = DOU+1
393      ENDIF
394*     The width of the part of Z that is used
395      ZUSEDW = ZUSEDU - ZUSEDL + 1
396
397
398      CALL ZLASET( 'Full', N, ZUSEDW, CZERO, CZERO,
399     $                    Z(1,ZUSEDL), LDZ )
400
401      EPS = DLAMCH( 'Precision' )
402      RQTOL = TWO * EPS
403*
404*     Set expert flags for standard code.
405      TRYRQC = .TRUE.
406
407      IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
408      ELSE
409*        Only selected eigenpairs are computed. Since the other evalues
410*        are not refined by RQ iteration, bisection has to compute to full
411*        accuracy.
412         RTOL1 = FOUR * EPS
413         RTOL2 = FOUR * EPS
414      ENDIF
415
416*     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the
417*     desired eigenvalues. The support of the nonzero eigenvector
418*     entries is contained in the interval IBEGIN:IEND.
419*     Remark that if k eigenpairs are desired, then the eigenvectors
420*     are stored in k contiguous columns of Z.
421
422*     DONE is the number of eigenvectors already computed
423      DONE = 0
424      IBEGIN = 1
425      WBEGIN = 1
426      DO 170 JBLK = 1, IBLOCK( M )
427         IEND = ISPLIT( JBLK )
428         SIGMA = L( IEND )
429*        Find the eigenvectors of the submatrix indexed IBEGIN
430*        through IEND.
431         WEND = WBEGIN - 1
432 15      CONTINUE
433         IF( WEND.LT.M ) THEN
434            IF( IBLOCK( WEND+1 ).EQ.JBLK ) THEN
435               WEND = WEND + 1
436               GO TO 15
437            END IF
438         END IF
439         IF( WEND.LT.WBEGIN ) THEN
440            IBEGIN = IEND + 1
441            GO TO 170
442         ELSEIF( (WEND.LT.DOL).OR.(WBEGIN.GT.DOU) ) THEN
443            IBEGIN = IEND + 1
444            WBEGIN = WEND + 1
445            GO TO 170
446         END IF
447
448*        Find local spectral diameter of the block
449         GL = GERS( 2*IBEGIN-1 )
450         GU = GERS( 2*IBEGIN )
451         DO 20 I = IBEGIN+1 , IEND
452            GL = MIN( GERS( 2*I-1 ), GL )
453            GU = MAX( GERS( 2*I ), GU )
454 20      CONTINUE
455         SPDIAM = GU - GL
456
457*        OLDIEN is the last index of the previous block
458         OLDIEN = IBEGIN - 1
459*        Calculate the size of the current block
460         IN = IEND - IBEGIN + 1
461*        The number of eigenvalues in the current block
462         IM = WEND - WBEGIN + 1
463
464*        This is for a 1x1 block
465         IF( IBEGIN.EQ.IEND ) THEN
466            DONE = DONE+1
467            Z( IBEGIN, WBEGIN ) = DCMPLX( ONE, ZERO )
468            ISUPPZ( 2*WBEGIN-1 ) = IBEGIN
469            ISUPPZ( 2*WBEGIN ) = IBEGIN
470            W( WBEGIN ) = W( WBEGIN ) + SIGMA
471            WORK( WBEGIN ) = W( WBEGIN )
472            IBEGIN = IEND + 1
473            WBEGIN = WBEGIN + 1
474            GO TO 170
475         END IF
476
477*        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND)
478*        Note that these can be approximations, in this case, the corresp.
479*        entries of WERR give the size of the uncertainty interval.
480*        The eigenvalue approximations will be refined when necessary as
481*        high relative accuracy is required for the computation of the
482*        corresponding eigenvectors.
483         CALL DCOPY( IM, W( WBEGIN ), 1,
484     $                   WORK( WBEGIN ), 1 )
485
486*        We store in W the eigenvalue approximations w.r.t. the original
487*        matrix T.
488         DO 30 I=1,IM
489            W(WBEGIN+I-1) = W(WBEGIN+I-1)+SIGMA
490 30      CONTINUE
491
492
493*        NDEPTH is the current depth of the representation tree
494         NDEPTH = 0
495*        PARITY is either 1 or 0
496         PARITY = 1
497*        NCLUS is the number of clusters for the next level of the
498*        representation tree, we start with NCLUS = 1 for the root
499         NCLUS = 1
500         IWORK( IINDC1+1 ) = 1
501         IWORK( IINDC1+2 ) = IM
502
503*        IDONE is the number of eigenvectors already computed in the current
504*        block
505         IDONE = 0
506*        loop while( IDONE.LT.IM )
507*        generate the representation tree for the current block and
508*        compute the eigenvectors
509   40    CONTINUE
510         IF( IDONE.LT.IM ) THEN
511*           This is a crude protection against infinitely deep trees
512            IF( NDEPTH.GT.M ) THEN
513               INFO = -2
514               RETURN
515            ENDIF
516*           breadth first processing of the current level of the representation
517*           tree: OLDNCL = number of clusters on current level
518            OLDNCL = NCLUS
519*           reset NCLUS to count the number of child clusters
520            NCLUS = 0
521*
522            PARITY = 1 - PARITY
523            IF( PARITY.EQ.0 ) THEN
524               OLDCLS = IINDC1
525               NEWCLS = IINDC2
526            ELSE
527               OLDCLS = IINDC2
528               NEWCLS = IINDC1
529            END IF
530*           Process the clusters on the current level
531            DO 150 I = 1, OLDNCL
532               J = OLDCLS + 2*I
533*              OLDFST, OLDLST = first, last index of current cluster.
534*                               cluster indices start with 1 and are relative
535*                               to WBEGIN when accessing W, WGAP, WERR, Z
536               OLDFST = IWORK( J-1 )
537               OLDLST = IWORK( J )
538               IF( NDEPTH.GT.0 ) THEN
539*                 Retrieve relatively robust representation (RRR) of cluster
540*                 that has been computed at the previous level
541*                 The RRR is stored in Z and overwritten once the eigenvectors
542*                 have been computed or when the cluster is refined
543
544                  IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
545*                    Get representation from location of the leftmost evalue
546*                    of the cluster
547                     J = WBEGIN + OLDFST - 1
548                  ELSE
549                     IF(WBEGIN+OLDFST-1.LT.DOL) THEN
550*                       Get representation from the left end of Z array
551                        J = DOL - 1
552                     ELSEIF(WBEGIN+OLDFST-1.GT.DOU) THEN
553*                       Get representation from the right end of Z array
554                        J = DOU
555                     ELSE
556                        J = WBEGIN + OLDFST - 1
557                     ENDIF
558                  ENDIF
559                  DO 45 K = 1, IN - 1
560                     D( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
561     $                                 J ) )
562                     L( IBEGIN+K-1 ) = DBLE( Z( IBEGIN+K-1,
563     $                                 J+1 ) )
564   45             CONTINUE
565                  D( IEND ) = DBLE( Z( IEND, J ) )
566                  SIGMA = DBLE( Z( IEND, J+1 ) )
567
568*                 Set the corresponding entries in Z to zero
569                  CALL ZLASET( 'Full', IN, 2, CZERO, CZERO,
570     $                         Z( IBEGIN, J), LDZ )
571               END IF
572
573*              Compute DL and DLL of current RRR
574               DO 50 J = IBEGIN, IEND-1
575                  TMP = D( J )*L( J )
576                  WORK( INDLD-1+J ) = TMP
577                  WORK( INDLLD-1+J ) = TMP*L( J )
578   50          CONTINUE
579
580               IF( NDEPTH.GT.0 ) THEN
581*                 P and Q are index of the first and last eigenvalue to compute
582*                 within the current block
583                  P = INDEXW( WBEGIN-1+OLDFST )
584                  Q = INDEXW( WBEGIN-1+OLDLST )
585*                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET
586*                 through the Q-OFFSET elements of these arrays are to be used.
587*                  OFFSET = P-OLDFST
588                  OFFSET = INDEXW( WBEGIN ) - 1
589*                 perform limited bisection (if necessary) to get approximate
590*                 eigenvalues to the precision needed.
591                  CALL DLARRB( IN, D( IBEGIN ),
592     $                         WORK(INDLLD+IBEGIN-1),
593     $                         P, Q, RTOL1, RTOL2, OFFSET,
594     $                         WORK(WBEGIN),WGAP(WBEGIN),WERR(WBEGIN),
595     $                         WORK( INDWRK ), IWORK( IINDWK ),
596     $                         PIVMIN, SPDIAM, IN, IINFO )
597                  IF( IINFO.NE.0 ) THEN
598                     INFO = -1
599                     RETURN
600                  ENDIF
601*                 We also recompute the extremal gaps. W holds all eigenvalues
602*                 of the unshifted matrix and must be used for computation
603*                 of WGAP, the entries of WORK might stem from RRRs with
604*                 different shifts. The gaps from WBEGIN-1+OLDFST to
605*                 WBEGIN-1+OLDLST are correctly computed in DLARRB.
606*                 However, we only allow the gaps to become greater since
607*                 this is what should happen when we decrease WERR
608                  IF( OLDFST.GT.1) THEN
609                     WGAP( WBEGIN+OLDFST-2 ) =
610     $             MAX(WGAP(WBEGIN+OLDFST-2),
611     $                 W(WBEGIN+OLDFST-1)-WERR(WBEGIN+OLDFST-1)
612     $                 - W(WBEGIN+OLDFST-2)-WERR(WBEGIN+OLDFST-2) )
613                  ENDIF
614                  IF( WBEGIN + OLDLST -1 .LT. WEND ) THEN
615                     WGAP( WBEGIN+OLDLST-1 ) =
616     $               MAX(WGAP(WBEGIN+OLDLST-1),
617     $                   W(WBEGIN+OLDLST)-WERR(WBEGIN+OLDLST)
618     $                   - W(WBEGIN+OLDLST-1)-WERR(WBEGIN+OLDLST-1) )
619                  ENDIF
620*                 Each time the eigenvalues in WORK get refined, we store
621*                 the newly found approximation with all shifts applied in W
622                  DO 53 J=OLDFST,OLDLST
623                     W(WBEGIN+J-1) = WORK(WBEGIN+J-1)+SIGMA
624 53               CONTINUE
625               END IF
626
627*              Process the current node.
628               NEWFST = OLDFST
629               DO 140 J = OLDFST, OLDLST
630                  IF( J.EQ.OLDLST ) THEN
631*                    we are at the right end of the cluster, this is also the
632*                    boundary of the child cluster
633                     NEWLST = J
634                  ELSE IF ( WGAP( WBEGIN + J -1).GE.
635     $                    MINRGP* ABS( WORK(WBEGIN + J -1) ) ) THEN
636*                    the right relative gap is big enough, the child cluster
637*                    (NEWFST,..,NEWLST) is well separated from the following
638                     NEWLST = J
639                   ELSE
640*                    inside a child cluster, the relative gap is not
641*                    big enough.
642                     GOTO 140
643                  END IF
644
645*                 Compute size of child cluster found
646                  NEWSIZ = NEWLST - NEWFST + 1
647
648*                 NEWFTT is the place in Z where the new RRR or the computed
649*                 eigenvector is to be stored
650                  IF((DOL.EQ.1).AND.(DOU.EQ.M)) THEN
651*                    Store representation at location of the leftmost evalue
652*                    of the cluster
653                     NEWFTT = WBEGIN + NEWFST - 1
654                  ELSE
655                     IF(WBEGIN+NEWFST-1.LT.DOL) THEN
656*                       Store representation at the left end of Z array
657                        NEWFTT = DOL - 1
658                     ELSEIF(WBEGIN+NEWFST-1.GT.DOU) THEN
659*                       Store representation at the right end of Z array
660                        NEWFTT = DOU
661                     ELSE
662                        NEWFTT = WBEGIN + NEWFST - 1
663                     ENDIF
664                  ENDIF
665
666                  IF( NEWSIZ.GT.1) THEN
667*
668*                    Current child is not a singleton but a cluster.
669*                    Compute and store new representation of child.
670*
671*
672*                    Compute left and right cluster gap.
673*
674*                    LGAP and RGAP are not computed from WORK because
675*                    the eigenvalue approximations may stem from RRRs
676*                    different shifts. However, W hold all eigenvalues
677*                    of the unshifted matrix. Still, the entries in WGAP
678*                    have to be computed from WORK since the entries
679*                    in W might be of the same order so that gaps are not
680*                    exhibited correctly for very close eigenvalues.
681                     IF( NEWFST.EQ.1 ) THEN
682                        LGAP = MAX( ZERO,
683     $                       W(WBEGIN)-WERR(WBEGIN) - VL )
684                    ELSE
685                        LGAP = WGAP( WBEGIN+NEWFST-2 )
686                     ENDIF
687                     RGAP = WGAP( WBEGIN+NEWLST-1 )
688*
689*                    Compute left- and rightmost eigenvalue of child
690*                    to high precision in order to shift as close
691*                    as possible and obtain as large relative gaps
692*                    as possible
693*
694                     DO 55 K =1,2
695                        IF(K.EQ.1) THEN
696                           P = INDEXW( WBEGIN-1+NEWFST )
697                        ELSE
698                           P = INDEXW( WBEGIN-1+NEWLST )
699                        ENDIF
700                        OFFSET = INDEXW( WBEGIN ) - 1
701                        CALL DLARRB( IN, D(IBEGIN),
702     $                       WORK( INDLLD+IBEGIN-1 ),P,P,
703     $                       RQTOL, RQTOL, OFFSET,
704     $                       WORK(WBEGIN),WGAP(WBEGIN),
705     $                       WERR(WBEGIN),WORK( INDWRK ),
706     $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
707     $                       IN, IINFO )
708 55                  CONTINUE
709*
710                     IF((WBEGIN+NEWLST-1.LT.DOL).OR.
711     $                  (WBEGIN+NEWFST-1.GT.DOU)) THEN
712*                       if the cluster contains no desired eigenvalues
713*                       skip the computation of that branch of the rep. tree
714*
715*                       We could skip before the refinement of the extremal
716*                       eigenvalues of the child, but then the representation
717*                       tree could be different from the one when nothing is
718*                       skipped. For this reason we skip at this place.
719                        IDONE = IDONE + NEWLST - NEWFST + 1
720                        GOTO 139
721                     ENDIF
722*
723*                    Compute RRR of child cluster.
724*                    Note that the new RRR is stored in Z
725*
726*                    DLARRF needs LWORK = 2*N
727                     CALL DLARRF( IN, D( IBEGIN ), L( IBEGIN ),
728     $                         WORK(INDLD+IBEGIN-1),
729     $                         NEWFST, NEWLST, WORK(WBEGIN),
730     $                         WGAP(WBEGIN), WERR(WBEGIN),
731     $                         SPDIAM, LGAP, RGAP, PIVMIN, TAU,
732     $                         WORK( INDIN1 ), WORK( INDIN2 ),
733     $                         WORK( INDWRK ), IINFO )
734*                    In the complex case, DLARRF cannot write
735*                    the new RRR directly into Z and needs an intermediate
736*                    workspace
737                     DO 56 K = 1, IN-1
738                        Z( IBEGIN+K-1, NEWFTT ) =
739     $                     DCMPLX( WORK( INDIN1+K-1 ), ZERO )
740                        Z( IBEGIN+K-1, NEWFTT+1 ) =
741     $                     DCMPLX( WORK( INDIN2+K-1 ), ZERO )
742   56                CONTINUE
743                     Z( IEND, NEWFTT ) =
744     $                  DCMPLX( WORK( INDIN1+IN-1 ), ZERO )
745                     IF( IINFO.EQ.0 ) THEN
746*                       a new RRR for the cluster was found by DLARRF
747*                       update shift and store it
748                        SSIGMA = SIGMA + TAU
749                        Z( IEND, NEWFTT+1 ) = DCMPLX( SSIGMA, ZERO )
750*                       WORK() are the midpoints and WERR() the semi-width
751*                       Note that the entries in W are unchanged.
752                        DO 116 K = NEWFST, NEWLST
753                           FUDGE =
754     $                          THREE*EPS*ABS(WORK(WBEGIN+K-1))
755                           WORK( WBEGIN + K - 1 ) =
756     $                          WORK( WBEGIN + K - 1) - TAU
757                           FUDGE = FUDGE +
758     $                          FOUR*EPS*ABS(WORK(WBEGIN+K-1))
759*                          Fudge errors
760                           WERR( WBEGIN + K - 1 ) =
761     $                          WERR( WBEGIN + K - 1 ) + FUDGE
762*                          Gaps are not fudged. Provided that WERR is small
763*                          when eigenvalues are close, a zero gap indicates
764*                          that a new representation is needed for resolving
765*                          the cluster. A fudge could lead to a wrong decision
766*                          of judging eigenvalues 'separated' which in
767*                          reality are not. This could have a negative impact
768*                          on the orthogonality of the computed eigenvectors.
769 116                    CONTINUE
770
771                        NCLUS = NCLUS + 1
772                        K = NEWCLS + 2*NCLUS
773                        IWORK( K-1 ) = NEWFST
774                        IWORK( K ) = NEWLST
775                     ELSE
776                        INFO = -2
777                        RETURN
778                     ENDIF
779                  ELSE
780*
781*                    Compute eigenvector of singleton
782*
783                     ITER = 0
784*
785                     TOL = FOUR * LOG(DBLE(IN)) * EPS
786*
787                     K = NEWFST
788                     WINDEX = WBEGIN + K - 1
789                     WINDMN = MAX(WINDEX - 1,1)
790                     WINDPL = MIN(WINDEX + 1,M)
791                     LAMBDA = WORK( WINDEX )
792                     DONE = DONE + 1
793*                    Check if eigenvector computation is to be skipped
794                     IF((WINDEX.LT.DOL).OR.
795     $                  (WINDEX.GT.DOU)) THEN
796                        ESKIP = .TRUE.
797                        GOTO 125
798                     ELSE
799                        ESKIP = .FALSE.
800                     ENDIF
801                     LEFT = WORK( WINDEX ) - WERR( WINDEX )
802                     RIGHT = WORK( WINDEX ) + WERR( WINDEX )
803                     INDEIG = INDEXW( WINDEX )
804*                    Note that since we compute the eigenpairs for a child,
805*                    all eigenvalue approximations are w.r.t the same shift.
806*                    In this case, the entries in WORK should be used for
807*                    computing the gaps since they exhibit even very small
808*                    differences in the eigenvalues, as opposed to the
809*                    entries in W which might "look" the same.
810
811                     IF( K .EQ. 1) THEN
812*                       In the case RANGE='I' and with not much initial
813*                       accuracy in LAMBDA and VL, the formula
814*                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA )
815*                       can lead to an overestimation of the left gap and
816*                       thus to inadequately early RQI 'convergence'.
817*                       Prevent this by forcing a small left gap.
818                        LGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
819                     ELSE
820                        LGAP = WGAP(WINDMN)
821                     ENDIF
822                     IF( K .EQ. IM) THEN
823*                       In the case RANGE='I' and with not much initial
824*                       accuracy in LAMBDA and VU, the formula
825*                       can lead to an overestimation of the right gap and
826*                       thus to inadequately early RQI 'convergence'.
827*                       Prevent this by forcing a small right gap.
828                        RGAP = EPS*MAX(ABS(LEFT),ABS(RIGHT))
829                     ELSE
830                        RGAP = WGAP(WINDEX)
831                     ENDIF
832                     GAP = MIN( LGAP, RGAP )
833                     IF(( K .EQ. 1).OR.(K .EQ. IM)) THEN
834*                       The eigenvector support can become wrong
835*                       because significant entries could be cut off due to a
836*                       large GAPTOL parameter in LAR1V. Prevent this.
837                        GAPTOL = ZERO
838                     ELSE
839                        GAPTOL = GAP * EPS
840                     ENDIF
841                     ISUPMN = IN
842                     ISUPMX = 1
843*                    Update WGAP so that it holds the minimum gap
844*                    to the left or the right. This is crucial in the
845*                    case where bisection is used to ensure that the
846*                    eigenvalue is refined up to the required precision.
847*                    The correct value is restored afterwards.
848                     SAVGAP = WGAP(WINDEX)
849                     WGAP(WINDEX) = GAP
850*                    We want to use the Rayleigh Quotient Correction
851*                    as often as possible since it converges quadratically
852*                    when we are close enough to the desired eigenvalue.
853*                    However, the Rayleigh Quotient can have the wrong sign
854*                    and lead us away from the desired eigenvalue. In this
855*                    case, the best we can do is to use bisection.
856                     USEDBS = .FALSE.
857                     USEDRQ = .FALSE.
858*                    Bisection is initially turned off unless it is forced
859                     NEEDBS =  .NOT.TRYRQC
860 120                 CONTINUE
861*                    Check if bisection should be used to refine eigenvalue
862                     IF(NEEDBS) THEN
863*                       Take the bisection as new iterate
864                        USEDBS = .TRUE.
865                        ITMP1 = IWORK( IINDR+WINDEX )
866                        OFFSET = INDEXW( WBEGIN ) - 1
867                        CALL DLARRB( IN, D(IBEGIN),
868     $                       WORK(INDLLD+IBEGIN-1),INDEIG,INDEIG,
869     $                       ZERO, TWO*EPS, OFFSET,
870     $                       WORK(WBEGIN),WGAP(WBEGIN),
871     $                       WERR(WBEGIN),WORK( INDWRK ),
872     $                       IWORK( IINDWK ), PIVMIN, SPDIAM,
873     $                       ITMP1, IINFO )
874                        IF( IINFO.NE.0 ) THEN
875                           INFO = -3
876                           RETURN
877                        ENDIF
878                        LAMBDA = WORK( WINDEX )
879*                       Reset twist index from inaccurate LAMBDA to
880*                       force computation of true MINGMA
881                        IWORK( IINDR+WINDEX ) = 0
882                     ENDIF
883*                    Given LAMBDA, compute the eigenvector.
884                     CALL ZLAR1V( IN, 1, IN, LAMBDA, D( IBEGIN ),
885     $                    L( IBEGIN ), WORK(INDLD+IBEGIN-1),
886     $                    WORK(INDLLD+IBEGIN-1),
887     $                    PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
888     $                    .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
889     $                    IWORK( IINDR+WINDEX ), ISUPPZ( 2*WINDEX-1 ),
890     $                    NRMINV, RESID, RQCORR, WORK( INDWRK ) )
891                     IF(ITER .EQ. 0) THEN
892                        BSTRES = RESID
893                        BSTW = LAMBDA
894                     ELSEIF(RESID.LT.BSTRES) THEN
895                        BSTRES = RESID
896                        BSTW = LAMBDA
897                     ENDIF
898                     ISUPMN = MIN(ISUPMN,ISUPPZ( 2*WINDEX-1 ))
899                     ISUPMX = MAX(ISUPMX,ISUPPZ( 2*WINDEX ))
900                     ITER = ITER + 1
901
902*                    sin alpha <= |resid|/gap
903*                    Note that both the residual and the gap are
904*                    proportional to the matrix, so ||T|| doesn't play
905*                    a role in the quotient
906
907*
908*                    Convergence test for Rayleigh-Quotient iteration
909*                    (omitted when Bisection has been used)
910*
911                     IF( RESID.GT.TOL*GAP .AND. ABS( RQCORR ).GT.
912     $                    RQTOL*ABS( LAMBDA ) .AND. .NOT. USEDBS)
913     $                    THEN
914*                       We need to check that the RQCORR update doesn't
915*                       move the eigenvalue away from the desired one and
916*                       towards a neighbor. -> protection with bisection
917                        IF(INDEIG.LE.NEGCNT) THEN
918*                          The wanted eigenvalue lies to the left
919                           SGNDEF = -ONE
920                        ELSE
921*                          The wanted eigenvalue lies to the right
922                           SGNDEF = ONE
923                        ENDIF
924*                       We only use the RQCORR if it improves the
925*                       the iterate reasonably.
926                        IF( ( RQCORR*SGNDEF.GE.ZERO )
927     $                       .AND.( LAMBDA + RQCORR.LE. RIGHT)
928     $                       .AND.( LAMBDA + RQCORR.GE. LEFT)
929     $                       ) THEN
930                           USEDRQ = .TRUE.
931*                          Store new midpoint of bisection interval in WORK
932                           IF(SGNDEF.EQ.ONE) THEN
933*                             The current LAMBDA is on the left of the true
934*                             eigenvalue
935                              LEFT = LAMBDA
936*                             We prefer to assume that the error estimate
937*                             is correct. We could make the interval not
938*                             as a bracket but to be modified if the RQCORR
939*                             chooses to. In this case, the RIGHT side should
940*                             be modified as follows:
941*                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR)
942                           ELSE
943*                             The current LAMBDA is on the right of the true
944*                             eigenvalue
945                              RIGHT = LAMBDA
946*                             See comment about assuming the error estimate is
947*                             correct above.
948*                              LEFT = MIN(LEFT, LAMBDA + RQCORR)
949                           ENDIF
950                           WORK( WINDEX ) =
951     $                       HALF * (RIGHT + LEFT)
952*                          Take RQCORR since it has the correct sign and
953*                          improves the iterate reasonably
954                           LAMBDA = LAMBDA + RQCORR
955*                          Update width of error interval
956                           WERR( WINDEX ) =
957     $                             HALF * (RIGHT-LEFT)
958                        ELSE
959                           NEEDBS = .TRUE.
960                        ENDIF
961                        IF(RIGHT-LEFT.LT.RQTOL*ABS(LAMBDA)) THEN
962*                             The eigenvalue is computed to bisection accuracy
963*                             compute eigenvector and stop
964                           USEDBS = .TRUE.
965                           GOTO 120
966                        ELSEIF( ITER.LT.MAXITR ) THEN
967                           GOTO 120
968                        ELSEIF( ITER.EQ.MAXITR ) THEN
969                           NEEDBS = .TRUE.
970                           GOTO 120
971                        ELSE
972                           INFO = 5
973                           RETURN
974                        END IF
975                     ELSE
976                        STP2II = .FALSE.
977        IF(USEDRQ .AND. USEDBS .AND.
978     $                     BSTRES.LE.RESID) THEN
979                           LAMBDA = BSTW
980                           STP2II = .TRUE.
981                        ENDIF
982                        IF (STP2II) THEN
983*                          improve error angle by second step
984                           CALL ZLAR1V( IN, 1, IN, LAMBDA,
985     $                          D( IBEGIN ), L( IBEGIN ),
986     $                          WORK(INDLD+IBEGIN-1),
987     $                          WORK(INDLLD+IBEGIN-1),
988     $                          PIVMIN, GAPTOL, Z( IBEGIN, WINDEX ),
989     $                          .NOT.USEDBS, NEGCNT, ZTZ, MINGMA,
990     $                          IWORK( IINDR+WINDEX ),
991     $                          ISUPPZ( 2*WINDEX-1 ),
992     $                          NRMINV, RESID, RQCORR, WORK( INDWRK ) )
993                        ENDIF
994                        WORK( WINDEX ) = LAMBDA
995                     END IF
996*
997*                    Compute FP-vector support w.r.t. whole matrix
998*
999                     ISUPPZ( 2*WINDEX-1 ) = ISUPPZ( 2*WINDEX-1 )+OLDIEN
1000                     ISUPPZ( 2*WINDEX ) = ISUPPZ( 2*WINDEX )+OLDIEN
1001                     ZFROM = ISUPPZ( 2*WINDEX-1 )
1002                     ZTO = ISUPPZ( 2*WINDEX )
1003                     ISUPMN = ISUPMN + OLDIEN
1004                     ISUPMX = ISUPMX + OLDIEN
1005*                    Ensure vector is ok if support in the RQI has changed
1006                     IF(ISUPMN.LT.ZFROM) THEN
1007                        DO 122 II = ISUPMN,ZFROM-1
1008                           Z( II, WINDEX ) = ZERO
1009 122                    CONTINUE
1010                     ENDIF
1011                     IF(ISUPMX.GT.ZTO) THEN
1012                        DO 123 II = ZTO+1,ISUPMX
1013                           Z( II, WINDEX ) = ZERO
1014 123                    CONTINUE
1015                     ENDIF
1016                     CALL ZDSCAL( ZTO-ZFROM+1, NRMINV,
1017     $                       Z( ZFROM, WINDEX ), 1 )
1018 125                 CONTINUE
1019*                    Update W
1020                     W( WINDEX ) = LAMBDA+SIGMA
1021*                    Recompute the gaps on the left and right
1022*                    But only allow them to become larger and not
1023*                    smaller (which can only happen through "bad"
1024*                    cancellation and doesn't reflect the theory
1025*                    where the initial gaps are underestimated due
1026*                    to WERR being too crude.)
1027                     IF(.NOT.ESKIP) THEN
1028                        IF( K.GT.1) THEN
1029                           WGAP( WINDMN ) = MAX( WGAP(WINDMN),
1030     $                          W(WINDEX)-WERR(WINDEX)
1031     $                          - W(WINDMN)-WERR(WINDMN) )
1032                        ENDIF
1033                        IF( WINDEX.LT.WEND ) THEN
1034                           WGAP( WINDEX ) = MAX( SAVGAP,
1035     $                          W( WINDPL )-WERR( WINDPL )
1036     $                          - W( WINDEX )-WERR( WINDEX) )
1037                        ENDIF
1038                     ENDIF
1039                     IDONE = IDONE + 1
1040                  ENDIF
1041*                 here ends the code for the current child
1042*
1043 139              CONTINUE
1044*                 Proceed to any remaining child nodes
1045                  NEWFST = J + 1
1046 140           CONTINUE
1047 150        CONTINUE
1048            NDEPTH = NDEPTH + 1
1049            GO TO 40
1050         END IF
1051         IBEGIN = IEND + 1
1052         WBEGIN = WEND + 1
1053 170  CONTINUE
1054*
1055
1056      RETURN
1057*
1058*     End of ZLARRV
1059*
1060      END
1061