1      SUBROUTINE CTGEVC( SIDE, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
2     $                   LDVL, VR, LDVR, MM, M, WORK, RWORK, INFO )
3*
4*  -- LAPACK routine (instrumented to count operations, version 3.0) --
5*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
6*     Courant Institute, Argonne National Lab, and Rice University
7*     June 30, 1999
8*
9*     .. Scalar Arguments ..
10      CHARACTER          HOWMNY, SIDE
11      INTEGER            INFO, LDA, LDB, LDVL, LDVR, M, MM, N
12*     ..
13*     .. Array Arguments ..
14      LOGICAL            SELECT( * )
15      REAL               RWORK( * )
16      COMPLEX            A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
17     $                   VR( LDVR, * ), WORK( * )
18*     ..
19*
20*     ----------------------- Begin Timing Code ------------------------
21*     Common block to return operation count and iteration count
22*     ITCNT is initialized to 0, OPS is only incremented
23*     OPST is used to accumulate small contributions to OPS
24*     to avoid roundoff error
25*     .. Common blocks ..
26      COMMON             / LATIME / OPS, ITCNT
27*     ..
28*     .. Scalars in Common ..
29      REAL               ITCNT, OPS
30*     ..
31*     ------------------------ End Timing Code -------------------------
32*
33*
34*  Purpose
35*  =======
36*
37*  CTGEVC computes some or all of the right and/or left generalized
38*  eigenvectors of a pair of complex upper triangular matrices (A,B).
39*
40*  The right generalized eigenvector x and the left generalized
41*  eigenvector y of (A,B) corresponding to a generalized eigenvalue
42*  w are defined by:
43*
44*          (A - wB) * x = 0  and  y**H * (A - wB) = 0
45*
46*  where y**H denotes the conjugate tranpose of y.
47*
48*  If an eigenvalue w is determined by zero diagonal elements of both A
49*  and B, a unit vector is returned as the corresponding eigenvector.
50*
51*  If all eigenvectors are requested, the routine may either return
52*  the matrices X and/or Y of right or left eigenvectors of (A,B), or
53*  the products Z*X and/or Q*Y, where Z and Q are input unitary
54*  matrices.  If (A,B) was obtained from the generalized Schur
55*  factorization of an original pair of matrices
56*     (A0,B0) = (Q*A*Z**H,Q*B*Z**H),
57*  then Z*X and Q*Y are the matrices of right or left eigenvectors of
58*  A.
59*
60*  Arguments
61*  =========
62*
63*  SIDE    (input) CHARACTER*1
64*          = 'R': compute right eigenvectors only;
65*          = 'L': compute left eigenvectors only;
66*          = 'B': compute both right and left eigenvectors.
67*
68*  HOWMNY  (input) CHARACTER*1
69*          = 'A': compute all right and/or left eigenvectors;
70*          = 'B': compute all right and/or left eigenvectors, and
71*                 backtransform them using the input matrices supplied
72*                 in VR and/or VL;
73*          = 'S': compute selected right and/or left eigenvectors,
74*                 specified by the logical array SELECT.
75*
76*  SELECT  (input) LOGICAL array, dimension (N)
77*          If HOWMNY='S', SELECT specifies the eigenvectors to be
78*          computed.
79*          If HOWMNY='A' or 'B', SELECT is not referenced.
80*          To select the eigenvector corresponding to the j-th
81*          eigenvalue, SELECT(j) must be set to .TRUE..
82*
83*  N       (input) INTEGER
84*          The order of the matrices A and B.  N >= 0.
85*
86*  A       (input) COMPLEX array, dimension (LDA,N)
87*          The upper triangular matrix A.
88*
89*  LDA     (input) INTEGER
90*          The leading dimension of array A.  LDA >= max(1,N).
91*
92*  B       (input) COMPLEX array, dimension (LDB,N)
93*          The upper triangular matrix B.  B must have real diagonal
94*          elements.
95*
96*  LDB     (input) INTEGER
97*          The leading dimension of array B.  LDB >= max(1,N).
98*
99*  VL      (input/output) COMPLEX array, dimension (LDVL,MM)
100*          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
101*          contain an N-by-N matrix Q (usually the unitary matrix Q
102*          of left Schur vectors returned by CHGEQZ).
103*          On exit, if SIDE = 'L' or 'B', VL contains:
104*          if HOWMNY = 'A', the matrix Y of left eigenvectors of (A,B);
105*          if HOWMNY = 'B', the matrix Q*Y;
106*          if HOWMNY = 'S', the left eigenvectors of (A,B) specified by
107*                      SELECT, stored consecutively in the columns of
108*                      VL, in the same order as their eigenvalues.
109*          If SIDE = 'R', VL is not referenced.
110*
111*  LDVL    (input) INTEGER
112*          The leading dimension of array VL.
113*          LDVL >= max(1,N) if SIDE = 'L' or 'B'; LDVL >= 1 otherwise.
114*
115*  VR      (input/output) COMPLEX array, dimension (LDVR,MM)
116*          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
117*          contain an N-by-N matrix Q (usually the unitary matrix Z
118*          of right Schur vectors returned by CHGEQZ).
119*          On exit, if SIDE = 'R' or 'B', VR contains:
120*          if HOWMNY = 'A', the matrix X of right eigenvectors of (A,B);
121*          if HOWMNY = 'B', the matrix Z*X;
122*          if HOWMNY = 'S', the right eigenvectors of (A,B) specified by
123*                      SELECT, stored consecutively in the columns of
124*                      VR, in the same order as their eigenvalues.
125*          If SIDE = 'L', VR is not referenced.
126*
127*  LDVR    (input) INTEGER
128*          The leading dimension of the array VR.
129*          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
130*
131*  MM      (input) INTEGER
132*          The leading dimension of the array VR.
133*          LDVR >= max(1,N) if SIDE = 'R' or 'B'; LDVR >= 1 otherwise.
134*
135*  M       (output) INTEGER
136*          The number of columns in the arrays VL and/or VR actually
137*          used to store the eigenvectors.  If HOWMNY = 'A' or 'B', M
138*          is set to N.  Each selected eigenvector occupies one column.
139*
140*  WORK    (workspace) COMPLEX array, dimension (2*N)
141*
142*  RWORK   (workspace) REAL array, dimension (2*N)
143*
144*  INFO    (output) INTEGER
145*          = 0:  successful exit.
146*          < 0:  if INFO = -i, the i-th argument had an illegal value.
147*
148*  =====================================================================
149*
150*     .. Parameters ..
151      REAL               ZERO, ONE
152      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
153      COMPLEX            CZERO, CONE
154      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
155     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
156*     ..
157*     .. Local Scalars ..
158      LOGICAL            COMPL, COMPR, ILALL, ILBACK, ILBBAD, ILCOMP,
159     $                   LSA, LSB
160      INTEGER            I, IBEG, IEIG, IEND, IHWMNY, IM, IOPST, ISIDE,
161     $                   ISRC, J, JE, JR
162      REAL               ACOEFA, ACOEFF, ANORM, ASCALE, BCOEFA, BIG,
163     $                   BIGNUM, BNORM, BSCALE, DMIN, SAFMIN, SBETA,
164     $                   SCALE, SMALL, TEMP, ULP, XMAX
165      COMPLEX            BCOEFF, CA, CB, D, SALPHA, SUM, SUMA, SUMB, X
166*     ..
167*     .. External Functions ..
168      LOGICAL            LSAME
169      REAL               SLAMCH
170      COMPLEX            CLADIV
171      EXTERNAL           CLADIV, LSAME, SLAMCH
172*     ..
173*     .. External Subroutines ..
174      EXTERNAL           CGEMV, SLABAD, XERBLA
175*     ..
176*     .. Intrinsic Functions ..
177      INTRINSIC          ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL
178*     ..
179*     .. Statement Functions ..
180      REAL               ABS1
181*     ..
182*     .. Statement Function definitions ..
183      ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
184*     ..
185*     .. Executable Statements ..
186*
187*     Decode and Test the input parameters
188*
189      IF( LSAME( HOWMNY, 'A' ) ) THEN
190         IHWMNY = 1
191         ILALL = .TRUE.
192         ILBACK = .FALSE.
193      ELSE IF( LSAME( HOWMNY, 'S' ) ) THEN
194         IHWMNY = 2
195         ILALL = .FALSE.
196         ILBACK = .FALSE.
197      ELSE IF( LSAME( HOWMNY, 'B' ) .OR. LSAME( HOWMNY, 'T' ) ) THEN
198         IHWMNY = 3
199         ILALL = .TRUE.
200         ILBACK = .TRUE.
201      ELSE
202         IHWMNY = -1
203      END IF
204*
205      IF( LSAME( SIDE, 'R' ) ) THEN
206         ISIDE = 1
207         COMPL = .FALSE.
208         COMPR = .TRUE.
209      ELSE IF( LSAME( SIDE, 'L' ) ) THEN
210         ISIDE = 2
211         COMPL = .TRUE.
212         COMPR = .FALSE.
213      ELSE IF( LSAME( SIDE, 'B' ) ) THEN
214         ISIDE = 3
215         COMPL = .TRUE.
216         COMPR = .TRUE.
217      ELSE
218         ISIDE = -1
219      END IF
220*
221      INFO = 0
222      IF( ISIDE.LT.0 ) THEN
223         INFO = -1
224      ELSE IF( IHWMNY.LT.0 ) THEN
225         INFO = -2
226      ELSE IF( N.LT.0 ) THEN
227         INFO = -4
228      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
229         INFO = -6
230      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
231         INFO = -8
232      END IF
233      IF( INFO.NE.0 ) THEN
234         CALL XERBLA( 'CTGEVC', -INFO )
235         RETURN
236      END IF
237*
238*     Count the number of eigenvectors
239*
240      IF( .NOT.ILALL ) THEN
241         IM = 0
242         DO 10 J = 1, N
243            IF( SELECT( J ) )
244     $         IM = IM + 1
245   10    CONTINUE
246      ELSE
247         IM = N
248      END IF
249*
250*     Check diagonal of B
251*
252      ILBBAD = .FALSE.
253      DO 20 J = 1, N
254         IF( AIMAG( B( J, J ) ).NE.ZERO )
255     $      ILBBAD = .TRUE.
256   20 CONTINUE
257*
258      IF( ILBBAD ) THEN
259         INFO = -7
260      ELSE IF( COMPL .AND. LDVL.LT.N .OR. LDVL.LT.1 ) THEN
261         INFO = -10
262      ELSE IF( COMPR .AND. LDVR.LT.N .OR. LDVR.LT.1 ) THEN
263         INFO = -12
264      ELSE IF( MM.LT.IM ) THEN
265         INFO = -13
266      END IF
267      IF( INFO.NE.0 ) THEN
268         CALL XERBLA( 'CTGEVC', -INFO )
269         RETURN
270      END IF
271*
272*     Quick return if possible
273*
274      M = IM
275      IF( N.EQ.0 )
276     $   RETURN
277*
278*     Machine Constants
279*
280      SAFMIN = SLAMCH( 'Safe minimum' )
281      BIG = ONE / SAFMIN
282      CALL SLABAD( SAFMIN, BIG )
283      ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
284      SMALL = SAFMIN*N / ULP
285      BIG = ONE / SMALL
286      BIGNUM = ONE / ( SAFMIN*N )
287*
288*     Compute the 1-norm of each column of the strictly upper triangular
289*     part of A and B to check for possible overflow in the triangular
290*     solver.
291*
292      ANORM = ABS1( A( 1, 1 ) )
293      BNORM = ABS1( B( 1, 1 ) )
294      RWORK( 1 ) = ZERO
295      RWORK( N+1 ) = ZERO
296      DO 40 J = 2, N
297         RWORK( J ) = ZERO
298         RWORK( N+J ) = ZERO
299         DO 30 I = 1, J - 1
300            RWORK( J ) = RWORK( J ) + ABS1( A( I, J ) )
301            RWORK( N+J ) = RWORK( N+J ) + ABS1( B( I, J ) )
302   30    CONTINUE
303         ANORM = MAX( ANORM, RWORK( J )+ABS1( A( J, J ) ) )
304         BNORM = MAX( BNORM, RWORK( N+J )+ABS1( B( J, J ) ) )
305   40 CONTINUE
306*
307      ASCALE = ONE / MAX( ANORM, SAFMIN )
308      BSCALE = ONE / MAX( BNORM, SAFMIN )
309*     ---------------------- Begin Timing Code -------------------------
310      OPS = OPS + REAL( 2*N**2+2*N+6 )
311*     ----------------------- End Timing Code --------------------------
312*
313*     Left eigenvectors
314*
315      IF( COMPL ) THEN
316         IEIG = 0
317*
318*        Main loop over eigenvalues
319*
320         DO 140 JE = 1, N
321            IF( ILALL ) THEN
322               ILCOMP = .TRUE.
323            ELSE
324               ILCOMP = SELECT( JE )
325            END IF
326            IF( ILCOMP ) THEN
327               IEIG = IEIG + 1
328*
329               IF( ABS1( A( JE, JE ) ).LE.SAFMIN .AND.
330     $             ABS( REAL( B( JE, JE ) ) ).LE.SAFMIN ) THEN
331*
332*                 Singular matrix pencil -- return unit eigenvector
333*
334                  DO 50 JR = 1, N
335                     VL( JR, IEIG ) = CZERO
336   50             CONTINUE
337                  VL( IEIG, IEIG ) = CONE
338                  GO TO 140
339               END IF
340*
341*              Non-singular eigenvalue:
342*              Compute coefficients  a  and  b  in
343*                   H
344*                 y  ( a A - b B ) = 0
345*
346               TEMP = ONE / MAX( ABS1( A( JE, JE ) )*ASCALE,
347     $                ABS( REAL( B( JE, JE ) ) )*BSCALE, SAFMIN )
348               SALPHA = ( TEMP*A( JE, JE ) )*ASCALE
349               SBETA = ( TEMP*REAL( B( JE, JE ) ) )*BSCALE
350               ACOEFF = SBETA*ASCALE
351               BCOEFF = SALPHA*BSCALE
352*
353*              Scale to avoid underflow
354*
355               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
356               LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
357     $               SMALL
358*
359               SCALE = ONE
360               IF( LSA )
361     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
362               IF( LSB )
363     $            SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
364     $                    MIN( BNORM, BIG ) )
365               IF( LSA .OR. LSB ) THEN
366                  SCALE = MIN( SCALE, ONE /
367     $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
368     $                    ABS1( BCOEFF ) ) ) )
369                  IF( LSA ) THEN
370                     ACOEFF = ASCALE*( SCALE*SBETA )
371                  ELSE
372                     ACOEFF = SCALE*ACOEFF
373                  END IF
374                  IF( LSB ) THEN
375                     BCOEFF = BSCALE*( SCALE*SALPHA )
376                  ELSE
377                     BCOEFF = SCALE*BCOEFF
378                  END IF
379*                 ----------------- Begin Timing Code ------------------
380*                 Calculation of SALPHA through DMIN
381                  IOPST = 34
382               ELSE
383                  IOPST = 20
384*                 ------------------ End Timing Code -------------------
385               END IF
386*
387               ACOEFA = ABS( ACOEFF )
388               BCOEFA = ABS1( BCOEFF )
389               XMAX = ONE
390               DO 60 JR = 1, N
391                  WORK( JR ) = CZERO
392   60          CONTINUE
393               WORK( JE ) = CONE
394               DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
395*
396*                                              H
397*              Triangular solve of  (a A - b B)  y = 0
398*
399*                                      H
400*              (rowwise in  (a A - b B) , or columnwise in a A - b B)
401*
402               DO 100 J = JE + 1, N
403*
404*                 Compute
405*                       j-1
406*                 SUM = sum  conjg( a*A(k,j) - b*B(k,j) )*x(k)
407*                       k=je
408*                 (Scale if necessary)
409*
410                  TEMP = ONE / XMAX
411                  IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GT.BIGNUM*
412     $                TEMP ) THEN
413                     DO 70 JR = JE, J - 1
414                        WORK( JR ) = TEMP*WORK( JR )
415   70                CONTINUE
416                     XMAX = ONE
417*                    ---------------- Begin Timing Code ----------------
418                     IOPST = IOPST + 2*( J-JE )
419*                    ----------------- End Timing Code -----------------
420                  END IF
421                  SUMA = CZERO
422                  SUMB = CZERO
423*
424                  DO 80 JR = JE, J - 1
425                     SUMA = SUMA + CONJG( A( JR, J ) )*WORK( JR )
426                     SUMB = SUMB + CONJG( B( JR, J ) )*WORK( JR )
427   80             CONTINUE
428                  SUM = ACOEFF*SUMA - CONJG( BCOEFF )*SUMB
429*
430*                 Form x(j) = - SUM / conjg( a*A(j,j) - b*B(j,j) )
431*
432*                 with scaling and perturbation of the denominator
433*
434                  D = CONJG( ACOEFF*A( J, J )-BCOEFF*B( J, J ) )
435                  IF( ABS1( D ).LE.DMIN )
436     $               D = CMPLX( DMIN )
437*
438                  IF( ABS1( D ).LT.ONE ) THEN
439                     IF( ABS1( SUM ).GE.BIGNUM*ABS1( D ) ) THEN
440                        TEMP = ONE / ABS1( SUM )
441                        DO 90 JR = JE, J - 1
442                           WORK( JR ) = TEMP*WORK( JR )
443   90                   CONTINUE
444                        XMAX = TEMP*XMAX
445                        SUM = TEMP*SUM
446*                       -------------- Begin Timing Code ---------------
447                        IOPST = IOPST + 2*( J-JE ) + 5
448*                       --------------- End Timing Code ----------------
449                     END IF
450                  END IF
451                  WORK( J ) = CLADIV( -SUM, D )
452                  XMAX = MAX( XMAX, ABS1( WORK( J ) ) )
453  100          CONTINUE
454*
455*              Back transform eigenvector if HOWMNY='B'.
456*
457               IF( ILBACK ) THEN
458                  CALL CGEMV( 'N', N, N+1-JE, CONE, VL( 1, JE ), LDVL,
459     $                        WORK( JE ), 1, CZERO, WORK( N+1 ), 1 )
460                  ISRC = 2
461                  IBEG = 1
462*                 ----------------- Begin Timing Code ------------------
463                  IOPST = IOPST + 8*N*( N+1-JE )
464*                 ------------------ End Timing Code -------------------
465               ELSE
466                  ISRC = 1
467                  IBEG = JE
468               END IF
469*
470*              Copy and scale eigenvector into column of VL
471*
472               XMAX = ZERO
473               DO 110 JR = IBEG, N
474                  XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
475  110          CONTINUE
476*
477               IF( XMAX.GT.SAFMIN ) THEN
478                  TEMP = ONE / XMAX
479                  DO 120 JR = IBEG, N
480                     VL( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
481  120             CONTINUE
482               ELSE
483                  IBEG = N + 1
484               END IF
485*
486               DO 130 JR = 1, IBEG - 1
487                  VL( JR, IEIG ) = CZERO
488  130          CONTINUE
489*
490*              ------------------- Begin Timing Code -------------------
491               OPS = OPS + ( REAL( 36*( N-JE )+8*( N-JE )*( N+1-JE )+3*
492     $               ( N+1-IBEG )+1 )+REAL( IOPST ) )
493*              -------------------- End Timing Code --------------------
494            END IF
495  140    CONTINUE
496      END IF
497*
498*     Right eigenvectors
499*
500      IF( COMPR ) THEN
501         IEIG = IM + 1
502*
503*        Main loop over eigenvalues
504*
505         DO 250 JE = N, 1, -1
506            IF( ILALL ) THEN
507               ILCOMP = .TRUE.
508            ELSE
509               ILCOMP = SELECT( JE )
510            END IF
511            IF( ILCOMP ) THEN
512               IEIG = IEIG - 1
513*
514               IF( ABS1( A( JE, JE ) ).LE.SAFMIN .AND.
515     $             ABS( REAL( B( JE, JE ) ) ).LE.SAFMIN ) THEN
516*
517*                 Singular matrix pencil -- return unit eigenvector
518*
519                  DO 150 JR = 1, N
520                     VR( JR, IEIG ) = CZERO
521  150             CONTINUE
522                  VR( IEIG, IEIG ) = CONE
523                  GO TO 250
524               END IF
525*
526*              Non-singular eigenvalue:
527*              Compute coefficients  a  and  b  in
528*
529*              ( a A - b B ) x  = 0
530*
531               TEMP = ONE / MAX( ABS1( A( JE, JE ) )*ASCALE,
532     $                ABS( REAL( B( JE, JE ) ) )*BSCALE, SAFMIN )
533               SALPHA = ( TEMP*A( JE, JE ) )*ASCALE
534               SBETA = ( TEMP*REAL( B( JE, JE ) ) )*BSCALE
535               ACOEFF = SBETA*ASCALE
536               BCOEFF = SALPHA*BSCALE
537*
538*              Scale to avoid underflow
539*
540               LSA = ABS( SBETA ).GE.SAFMIN .AND. ABS( ACOEFF ).LT.SMALL
541               LSB = ABS1( SALPHA ).GE.SAFMIN .AND. ABS1( BCOEFF ).LT.
542     $               SMALL
543*
544               SCALE = ONE
545               IF( LSA )
546     $            SCALE = ( SMALL / ABS( SBETA ) )*MIN( ANORM, BIG )
547               IF( LSB )
548     $            SCALE = MAX( SCALE, ( SMALL / ABS1( SALPHA ) )*
549     $                    MIN( BNORM, BIG ) )
550               IF( LSA .OR. LSB ) THEN
551                  SCALE = MIN( SCALE, ONE /
552     $                    ( SAFMIN*MAX( ONE, ABS( ACOEFF ),
553     $                    ABS1( BCOEFF ) ) ) )
554                  IF( LSA ) THEN
555                     ACOEFF = ASCALE*( SCALE*SBETA )
556                  ELSE
557                     ACOEFF = SCALE*ACOEFF
558                  END IF
559                  IF( LSB ) THEN
560                     BCOEFF = BSCALE*( SCALE*SALPHA )
561                  ELSE
562                     BCOEFF = SCALE*BCOEFF
563                  END IF
564*                 ----------------- Begin Timing Code ------------------
565*                 Calculation of SALPHA through DMIN
566                  IOPST = 34
567               ELSE
568                  IOPST = 20
569*                 ------------------ End Timing Code -------------------
570               END IF
571*
572               ACOEFA = ABS( ACOEFF )
573               BCOEFA = ABS1( BCOEFF )
574               XMAX = ONE
575               DO 160 JR = 1, N
576                  WORK( JR ) = CZERO
577  160          CONTINUE
578               WORK( JE ) = CONE
579               DMIN = MAX( ULP*ACOEFA*ANORM, ULP*BCOEFA*BNORM, SAFMIN )
580*
581*              Triangular solve of  (a A - b B) x = 0  (columnwise)
582*
583*              WORK(1:j-1) contains sums w,
584*              WORK(j+1:JE) contains x
585*
586               DO 170 JR = 1, JE - 1
587                  WORK( JR ) = ACOEFF*A( JR, JE ) - BCOEFF*B( JR, JE )
588  170          CONTINUE
589               WORK( JE ) = CONE
590*
591               DO 210 J = JE - 1, 1, -1
592*
593*                 Form x(j) := - w(j) / d
594*                 with scaling and perturbation of the denominator
595*
596                  D = ACOEFF*A( J, J ) - BCOEFF*B( J, J )
597                  IF( ABS1( D ).LE.DMIN )
598     $               D = CMPLX( DMIN )
599*
600                  IF( ABS1( D ).LT.ONE ) THEN
601                     IF( ABS1( WORK( J ) ).GE.BIGNUM*ABS1( D ) ) THEN
602                        TEMP = ONE / ABS1( WORK( J ) )
603                        DO 180 JR = 1, JE
604                           WORK( JR ) = TEMP*WORK( JR )
605  180                   CONTINUE
606*                       -------------- Begin Timing Code ---------------
607                        IOPST = IOPST + 2*JE + 5
608                     ELSE
609                        IOPST = IOPST + 3
610*                       --------------- End Timing Code ----------------
611                     END IF
612                  END IF
613*
614                  WORK( J ) = CLADIV( -WORK( J ), D )
615*
616                  IF( J.GT.1 ) THEN
617*
618*                    w = w + x(j)*(a A(*,j) - b B(*,j) ) with scaling
619*
620                     IF( ABS1( WORK( J ) ).GT.ONE ) THEN
621                        TEMP = ONE / ABS1( WORK( J ) )
622                        IF( ACOEFA*RWORK( J )+BCOEFA*RWORK( N+J ).GE.
623     $                      BIGNUM*TEMP ) THEN
624                           DO 190 JR = 1, JE
625                              WORK( JR ) = TEMP*WORK( JR )
626  190                      CONTINUE
627*                          ------------- Begin Timing Code -------------
628                           IOPST = IOPST + 2*JE + 6
629                        ELSE
630                           IOPST = IOPST + 6
631*                          -------------- End Timing Code --------------
632                        END IF
633                     END IF
634*
635                     CA = ACOEFF*WORK( J )
636                     CB = BCOEFF*WORK( J )
637                     DO 200 JR = 1, J - 1
638                        WORK( JR ) = WORK( JR ) + CA*A( JR, J ) -
639     $                               CB*B( JR, J )
640  200                CONTINUE
641                  END IF
642  210          CONTINUE
643*
644*              Back transform eigenvector if HOWMNY='B'.
645*
646               IF( ILBACK ) THEN
647                  CALL CGEMV( 'N', N, JE, CONE, VR, LDVR, WORK, 1,
648     $                        CZERO, WORK( N+1 ), 1 )
649                  ISRC = 2
650                  IEND = N
651*                 ----------------- Begin Timing Code ------------------
652                  IOPST = IOPST + 8*N*JE
653*                 ------------------ End Timing Code -------------------
654               ELSE
655                  ISRC = 1
656                  IEND = JE
657               END IF
658*
659*              Copy and scale eigenvector into column of VR
660*
661               XMAX = ZERO
662               DO 220 JR = 1, IEND
663                  XMAX = MAX( XMAX, ABS1( WORK( ( ISRC-1 )*N+JR ) ) )
664  220          CONTINUE
665*
666               IF( XMAX.GT.SAFMIN ) THEN
667                  TEMP = ONE / XMAX
668                  DO 230 JR = 1, IEND
669                     VR( JR, IEIG ) = TEMP*WORK( ( ISRC-1 )*N+JR )
670  230             CONTINUE
671               ELSE
672                  IEND = 0
673               END IF
674*
675               DO 240 JR = IEND + 1, N
676                  VR( JR, IEIG ) = CZERO
677  240          CONTINUE
678*
679*              ------------------- Begin Timing Code -------------------
680               OPS = OPS + ( REAL( 30*( JE-2 )+8*( JE-1 )*( JE-2 )+3*
681     $               IEND+22 )+REAL( IOPST ) )
682*              -------------------- End Timing Code --------------------
683            END IF
684  250    CONTINUE
685      END IF
686*
687      RETURN
688*
689*     End of CTGEVC
690*
691      END
692