1%feature("docstring") OT::Burr 2"Burr distribution. 3 4Available constructors: 5 Burr(*c=1.0, k=1.0*) 6 7Parameters 8---------- 9c : float, :math:`c > 0` 10k : float, :math:`k > 0` 11 12Notes 13----- 14Its probability density function is defined as: 15 16.. math:: 17 18 f_X(x) = c k \frac{x^{c - 1}}{(1 + x^c)^{k + 1}}, \quad x \in \Rset^{+*} 19 20with :math:`c, k > 0`. 21 22Its only, first-order moment is: 23 24.. math:: 25 26 \Expect{X} = k {\rm B}(k - 1 / c, 1 + 1 / c) 27 28where :math:`\rm B` denotes Euler's beta function. 29 30Examples 31-------- 32Create a distribution: 33 34>>> import openturns as ot 35>>> distribution = ot.Burr(2.0, 3.0) 36 37Draw a sample: 38 39>>> sample = distribution.getSample(5)" 40 41// --------------------------------------------------------------------- 42 43%feature("docstring") OT::Burr::getC 44"Accessor to the parameter :math:`c`. 45 46Returns 47------- 48c : float" 49 50// --------------------------------------------------------------------- 51 52%feature("docstring") OT::Burr::getK 53"Accessor to the parameter :math:`k`. 54 55Returns 56------- 57k : float" 58 59// --------------------------------------------------------------------- 60 61%feature("docstring") OT::Burr::setC 62"Accessor to the parameter :math:`c`. 63 64Parameters 65---------- 66c : float, :math:`c > 0`" 67 68// --------------------------------------------------------------------- 69 70%feature("docstring") OT::Burr::setK 71"Accessor to the parameter :math:`k`. 72 73Parameters 74---------- 75k : float, :math:`k > 0`" 76