1%feature("docstring") OT::FrankCopulaFactory 2"Frank Copula factory. 3 4The parameters are estimated using the following equations: 5 6:math:`\Hat{\theta}_n` is solution of 7 8.. math:: 9 10 \displaystyle \Hat{\tau}_n = 1-4\left( \frac{1-D(\Hat{\theta}_n, 1)^{\strut}}{\theta} \right) 11 12where :math:`D` is the Debye function defined as 13 14.. math:: 15 16 \displaystyle D(x, n)=\frac{n}{x^n}\int_0^x \frac{t^n}{e^t-1_{\strut}} dt 17 18See also 19-------- 20DistributionFactory, FrankCopula" 21