1%feature("docstring") OT::FrankCopulaFactory
2"Frank Copula factory.
3
4The parameters are estimated using the following equations:
5
6:math:`\Hat{\theta}_n` is solution of
7
8.. math::
9
10    \displaystyle \Hat{\tau}_n = 1-4\left( \frac{1-D(\Hat{\theta}_n, 1)^{\strut}}{\theta} \right)
11
12where :math:`D` is the Debye function defined as
13
14.. math::
15
16    \displaystyle D(x, n)=\frac{n}{x^n}\int_0^x \frac{t^n}{e^t-1_{\strut}} dt
17
18See also
19--------
20DistributionFactory, FrankCopula"
21