1%feature("docstring") OT::MeixnerFactory 2"Meixner specific orthonormal univariate polynomial family. 3 4For the :class:`~openturns.NegativeBinomial` distribution. 5 6Available constructors: 7 MeixnerFactory(*r=1.0, p=0.5*) 8 9Parameters 10---------- 11r : float, :math:`r > 0` 12 Number of failures parameter of the :class:`~openturns.NegativeBinomial` 13 distribution. 14p : float, :math:`0 < p < 1` 15 Success probability parameter of the :class:`~openturns.NegativeBinomial` 16 distribution. 17 18Notes 19----- 20Any sequence of orthogonal polynomials has a recurrence formula relating any 21three consecutive polynomials as follows: 22 23.. math:: 24 25 P_{i + 1} = (a_i x + b_i) P_i + c_i P_{i - 1}, \quad 1 < i 26 27The recurrence coefficients for the Meixner polynomials come analytically 28and read: 29 30.. math:: 31 32 \begin{array}{rcl} 33 a_i & = & \displaystyle \frac{p - 1} 34 {\sqrt{p (i + 1) (i + r)}} \\ 35 b_i & = & \displaystyle \frac{p (i + r) + i} 36 {\sqrt{p (i + 1) (i + r)}} \\ 37 c_i & = & \displaystyle - \frac{\sqrt{p i (i + r - 1)}} 38 {\sqrt{p (i + 1) (i + r)}} \\ 39 \end{array}, \quad 1 < i 40 41where :math:`r` and :math:`p` are the parameters of the 42:class:`~openturns.NegativeBinomial` distribution. 43 44See also 45-------- 46StandardDistributionPolynomialFactory 47 48Examples 49-------- 50>>> import openturns as ot 51>>> polynomial_factory = ot.MeixnerFactory() 52>>> for i in range(3): 53... print(polynomial_factory.build(i)) 541 550.707107 - 0.707107 * X 560.5 - 1.25 * X + 0.25 * X^2" 57 58// --------------------------------------------------------------------- 59 60%feature("docstring") OT::MeixnerFactory::getP 61"Accessor to the success probability parameter :math:`p`. 62 63Of the :class:`~openturns.NegativeBinomial` distribution. 64 65Returns 66------- 67p : float 68 Success probability parameter of the :class:`~openturns.NegativeBinomial` 69 distribution." 70 71// --------------------------------------------------------------------- 72 73%feature("docstring") OT::MeixnerFactory::getR 74"Accessor to the number of failures parameter :math:`r`. 75 76Of the :class:`~openturns.NegativeBinomial` distribution. 77 78Returns 79------- 80r : int 81 Number of failures parameter of the :class:`~openturns.NegativeBinomial` 82 distribution." 83