1%feature("docstring") OT::MixtureClassifier 2"Particular classifier based on a mixture distribution. 3 4Available constructors: 5 MixtureClassifier(*mixtDist*) 6 7Parameters 8---------- 9mixtDist : :class:`~openturns.Mixture` 10 A mixture distribution. 11 12See also 13-------- 14Classifier, ExpertMixture 15 16Notes 17----- 18This implements a mixture classifier which is a particular classifier based on 19a mixture distribution: 20 21.. math:: 22 23 p( \vect{x} ) = \sum_{i=1}^N w_i p_i ( \vect{x} ) 24 25The classifier proposes :math:`N` classes. The rule to assign a point 26:math:`\vect{x}` to a class :math:`i` is defined as follows: 27 28.. math:: 29 30 i = \argmax_k \log w_k p_k( \vect{x} ) 31 32See useful methods :meth:`classify` and :meth:`grade`." 33 34// --------------------------------------------------------------------- 35 36%feature("docstring") OT::MixtureClassifier::classify 37"Classify points according to the classifier. 38 39**Available usages**: 40 41 classify(*inputPoint*) 42 43 classify(*inputSample*) 44 45Parameters 46---------- 47inputPoint : sequence of float 48 A point to classify. 49inputSample : 2-d a sequence of float 50 A set of point to classify. 51 52Notes 53----- 54The classifier proposes :math:`N` classes where :math:`N` is the dimension of 55the mixture distribution *mixtDist*. The rule to assign a point :math:`\vect{x}` 56to a class :math:`i` is defined as follows: 57 58.. math:: 59 60 i = \argmax_k \log w_k p_k( \vect{x} ) 61 62In the first usage, it returns an integer which corresponds to the class where 63*inputPoint* has been assigned. 64 65In the second usage, it returns an :class:`~openturns.Indices` that collects the 66class of each point of *inputSample*." 67 68// --------------------------------------------------------------------- 69 70%feature("docstring") OT::MixtureClassifier::grade 71"Grade points according to the classifier. 72 73**Available usages**: 74 75 grade(*inputPoint, k*) 76 77 grade(*inputSample, classList*) 78 79Parameters 80---------- 81inputPoint : sequence of float 82 A point to grade. 83inputSample : 2-d a sequence of float 84 A set of point to grade. 85k : integer 86 The class number. 87classList : sequence of integer 88 The list of class number. 89 90Notes 91----- 92The grade of :math:`\vect{x}` with respect to the class *k* is 93:math:`log w_k p_k ( \vect{x} )`. 94 95In the first usage, it returns a real that grades *inputPoint* with respect to 96the class *k*. The greatest, the best. 97 98In the second usage, it returns an :class:`~openturns.Indices` that collects the 99grades of the :math:`i^{th}` point of *inputSample* with respect to the 100:math:`i^{th}` class of *classList*." 101 102// --------------------------------------------------------------------- 103 104%feature("docstring") OT::MixtureClassifier::getMixture 105"Accessor to the mixture distribution. 106 107Returns 108------- 109mixtDist : :class:`~openturns.Mixture` 110 The mixture distribution." 111 112// --------------------------------------------------------------------- 113 114%feature("docstring") OT::MixtureClassifier::setMixture 115"Accessor to the mixture distribution. 116 117Parameters 118---------- 119mixtDist : :class:`~openturns.Mixture` 120 The mixture distribution." 121