1%feature("docstring") OT::NormalCopula 2"Normal copula. 3 4Available constructor: 5 NormalCopula(*n=1*) 6 7 NormalCopula(*R*) 8 9Parameters 10---------- 11n : int, :math:`n \geq 1` 12 Dimension of the copula. Default is :math:`n=2`. 13R : :class:`~openturns.CorrelationMatrix` 14 Shape matrix :math:`\mat{R}` of the copula, ie the correlation matrix of 15 any normal distribution with this copula (it is not the Kendall nor the 16 Spearman rank correlation matrix of the distribution). 17 18Notes 19----- 20The Normal copula is defined by : 21 22.. math:: 23 24 C(u_1, \cdots, u_n) = \Phi_{\mat{R}}^n(\Phi^{-1}(u_1), \cdots, \Phi^{-1}(u_n)) 25 26where :math:`\Phi_{\mat{R}}^n` is the cumulative distribution function of the 27normal distribution with zero mean, unit marginal variances and correlation :math:`R`: 28 29.. math:: 30 31 \Phi_{\mat{R}}^n(\vect{x}) = \int_{-\infty}^{x_1} \ldots 32 \int_{-\infty}^{x_n} 33 \frac{1} 34 {{(2\pi\det{\mat{R}})}^{\frac{n}{2}}} 35 \exp \left(-\frac{\Tr{\vect{u}}\mat{R}\vect{u}}{2} \right)\di{\vect{u}} 36 37with :math:`\Phi` given by: 38 39.. math:: 40 41 \Phi(x) = \int_{-\infty}^x \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}\di{t} 42 43The correlation matrix :math:`\mat{R}` is linked to the Spearman correlation 44and the Kendall concordance through the following relations: 45 46- From the Spearman correlation matrix: 47 48 .. math :: 49 50 \mat{R}_{ij} = 2 \sin \left( \frac{\pi}{6}\rho_{ij}^S \right) 51 52 where :math:`\rho_{ij}^S = \rho^S(X_i,X_j) = \rho^P(F_{X_i}(X_i),F_{X_j}(X_j))` 53 54- From the Kendall concordance matrix: 55 56 .. math:: 57 58 \mat{R}_{ij} = \sin \left( \frac{\pi}{2} \tau_{ij} \right) 59 60 with 61 62 .. math:: 63 64 \tau_{ij} = \tau(X_i,X_j) 65 = \Prob{(X_{i_1} - X_{i_2})(X_{j_1} - X_{j_2}) > 0} - 66 \Prob{(X_{i_1} - X_{i_2})(X_{j_1} - X_{j_2}) < 0} 67 68 where :math:`(X_{i_1},X_{j_1}` and :math:`(X_{i_2},X_{j_2})` follow the 69 distribution of :math:`(X_i,X_j)`. 70 71See also 72-------- 73Distribution 74 75Examples 76-------- 77Create a distribution: 78 79>>> import openturns as ot 80>>> R = ot.CorrelationMatrix(3) 81>>> R[0, 1] = 0.25 82>>> R[1, 2] = 0.25 83>>> copula = ot.NormalCopula(R) 84 85Draw a sample: 86 87>>> sample = copula.getSample(5)" 88 89// --------------------------------------------------------------------- 90 91%feature("docstring") OT::NormalCopula::GetCorrelationFromKendallCorrelation 92"Get the correlation matrix from the Kendall correlation matrix. 93 94Parameters 95---------- 96K : :class:`~openturns.CorrelationMatrix` 97 Kendall correlation matrix of the considered random vector. 98 99Returns 100------- 101R : :class:`~openturns.CorrelationMatrix` 102 Correlation matrix :math:`\mat{R}` of the normal copula evaluated from 103 the Kendall correlation matrix :math:`K`." 104 105// --------------------------------------------------------------------- 106 107%feature("docstring") OT::NormalCopula::GetCorrelationFromSpearmanCorrelation 108"Get the correlation matrix from the Spearman correlation matrix. 109 110Parameters 111---------- 112S : :class:`~openturns.CorrelationMatrix` 113 Spearman correlation matrix :math:`S` of the considered random vector. 114 115Returns 116------- 117R : :class:`~openturns.CorrelationMatrix` 118 Correlation matrix :math:`\mat{R}` of the normal copula evaluated from 119 the Spearman correlation matrix :math:`S`." 120 121