1%feature("docstring") OT::Triangular 2"Triangular distribution. 3 4Available constructors: 5 Triangular(*a=-1.0, m=0.0, b=1.0*) 6 7Parameters 8---------- 9a : float 10 Lower bound. 11m : float, :math:`a \leq m \leq b` 12 Mode. 13b : float, :math:`a < b` 14 Upper bound. 15 16 17Notes 18----- 19Its probability density function is defined as: 20 21.. math:: 22 23 f_X(x) = \left\{ 24 \begin{array}{ll} 25 \displaystyle \frac{2(x - a)}{(m - a)(b - a)} 26 & a \leq x \leq m \\ 27 \displaystyle \frac{2(b - x)}{(b - m)(b - a)} 28 & m \leq x \leq b 29 \end{array} 30 \right., \quad x \in [a, b] 31 32Its first moments are: 33 34.. math:: 35 :nowrap: 36 37 \begin{eqnarray*} 38 \Expect{X} & = & \frac{1}{3}\,(a+m+b) \\ 39 \Var{X} & = & \frac{1}{18} (a^2+b^2+m^2-ab-am-bm) 40 \end{eqnarray*} 41 42Examples 43-------- 44Create a distribution: 45 46>>> import openturns as ot 47>>> distribution = ot.Triangular(1.0, 2.5, 4.0) 48 49Draw a sample: 50 51>>> sample = distribution.getSample(5)" 52 53// --------------------------------------------------------------------- 54 55%feature("docstring") OT::Triangular::getA 56"Accessor to the distribution's lower bound. 57 58Returns 59------- 60a : float 61 Lower bound." 62 63// --------------------------------------------------------------------- 64 65%feature("docstring") OT::Triangular::getB 66"Accessor to the distribution's upper bound. 67 68Returns 69------- 70b : float 71 Upper bound." 72 73// --------------------------------------------------------------------- 74 75%feature("docstring") OT::Triangular::getM 76"Accessor to the distribution's mode. 77 78Returns 79------- 80m : float 81 Mode." 82 83// --------------------------------------------------------------------- 84 85%feature("docstring") OT::Triangular::setAMB 86"Accessor to the distribution's parameters. 87 88Parameters 89---------- 90a : float 91 Lower bound. 92m : float, :math:`a \leq m \leq b` 93 Mode. 94b : float, :math:`a < b` 95 Upper bound." 96 97