1%feature("docstring") OT::VonMises
2"von Mises distribution.
3
4Parameters
5----------
6mu : float
7    Mean parameter
8kappa : float, :math:`\kappa > 0`
9    Concentration parameter
10
11Notes
12-----
13Its probability density function is defined as:
14
15.. math::
16
17    f_X(x) = \frac{e^{\kappa\cos(x-\mu)}}
18                  {2\pi \mathrm{I}_0(\kappa)}, \quad x \in [\mu-\pi, \mu+\pi]
19
20with :math:`\kappa > 0` and :math:`\mathrm{I}_0` the modified Bessel function of order 0.
21
22Examples
23--------
24Create a distribution:
25
26>>> import openturns as ot
27>>> distribution = ot.VonMises(1.0, 2.0)
28
29Draw a sample:
30
31>>> sample = distribution.getSample(5)"
32
33// ---------------------------------------------------------------------
34
35%feature("docstring") OT::VonMises::getMu
36"Accessor to the location parameter.
37
38Returns
39-------
40mu : float
41    Mean parameter."
42
43// ---------------------------------------------------------------------
44
45%feature("docstring") OT::VonMises::setMu
46"Accessor to the location parameter.
47
48Parameters
49----------
50mu : float
51    Mean parameter."
52
53// ---------------------------------------------------------------------
54
55%feature("docstring") OT::VonMises::getKappa
56"Accessor to the concentration parameter.
57
58Returns
59-------
60kappa : float
61    Concentration parameter."
62
63// ---------------------------------------------------------------------
64
65%feature("docstring") OT::VonMises::setKappa
66"Accessor to the concentration parameter.
67
68Parameters
69----------
70kappa : float, :math:`\kappa > 0`
71    Concentration parameter."
72