1%feature("docstring") OT::VonMises 2"von Mises distribution. 3 4Parameters 5---------- 6mu : float 7 Mean parameter 8kappa : float, :math:`\kappa > 0` 9 Concentration parameter 10 11Notes 12----- 13Its probability density function is defined as: 14 15.. math:: 16 17 f_X(x) = \frac{e^{\kappa\cos(x-\mu)}} 18 {2\pi \mathrm{I}_0(\kappa)}, \quad x \in [\mu-\pi, \mu+\pi] 19 20with :math:`\kappa > 0` and :math:`\mathrm{I}_0` the modified Bessel function of order 0. 21 22Examples 23-------- 24Create a distribution: 25 26>>> import openturns as ot 27>>> distribution = ot.VonMises(1.0, 2.0) 28 29Draw a sample: 30 31>>> sample = distribution.getSample(5)" 32 33// --------------------------------------------------------------------- 34 35%feature("docstring") OT::VonMises::getMu 36"Accessor to the location parameter. 37 38Returns 39------- 40mu : float 41 Mean parameter." 42 43// --------------------------------------------------------------------- 44 45%feature("docstring") OT::VonMises::setMu 46"Accessor to the location parameter. 47 48Parameters 49---------- 50mu : float 51 Mean parameter." 52 53// --------------------------------------------------------------------- 54 55%feature("docstring") OT::VonMises::getKappa 56"Accessor to the concentration parameter. 57 58Returns 59------- 60kappa : float 61 Concentration parameter." 62 63// --------------------------------------------------------------------- 64 65%feature("docstring") OT::VonMises::setKappa 66"Accessor to the concentration parameter. 67 68Parameters 69---------- 70kappa : float, :math:`\kappa > 0` 71 Concentration parameter." 72