1%define OT_WeightedExperiment_doc 2"Weighted experiment. 3 4Available constructor: 5 WeightedExperiment(*distribution=ot.Uniform(), size=100*) 6 7Parameters 8---------- 9distribution : :class:`~openturns.Distribution` 10 Distribution :math:`\mu` used to generate the set of input data. 11size : positive int 12 Number :math:`cardI` of points that will be generated in the experiment. 13 14Notes 15----- 16WeightedExperiment is used to generate the points :math:`\Xi_i` so that the 17mean :math:`E_{\mu}` is approximated as follows: 18 19.. math:: 20 21 \Expect{ f(\vect{Z})}_{\mu} \simeq \sum_{i \in I} \omega_i f(\Xi_i) 22 23where :math:`\mu` is a distribution, :math:`f` is a function :math:`L_1(\mu)` 24and :math:`\omega_i` are the weights associated with the points. By default, 25all the weights are equal to :math:`1/cardI`. 26 27A WeightedExperiment object can be created only through its derived classes 28which are distributed in three groups: 29 301. The first category is made up of the random patterns, where the set of input 31 data is generated from the joint distribution of the input random vector, 32 according to these sampling techniques: 33 34 - :class:`Monte Carlo <openturns.MonteCarloExperiment>` 35 36 - :class:`LHS <openturns.LHSExperiment>` 37 38 - :class:`Bootstrap <openturns.BootstrapExperiment>` 39 40 - :class:`Importance Sampling <openturns.ImportanceSamplingExperiment>` 41 422. The second category contains the :class:`low discrepancy sequences 43 <openturns.LowDiscrepancySequence>`. OpenTURNS proposes the Faure, Halton, 44 Haselgrove, Reverse Halton and Sobol sequences. 45 463. The third category consists of deterministic patterns: 47 48 - :class:`Gauss product <openturns.GaussProductExperiment>` 49 50 - :class:`~openturns.FixedExperiment` 51 52 - :class:`~openturns.LowDiscrepancyExperiment`" 53%enddef 54%feature("docstring") OT::WeightedExperimentImplementation 55OT_WeightedExperiment_doc 56 57// --------------------------------------------------------------------- 58 59%define OT_WeightedExperiment_generate_doc 60"Generate points according to the type of the experiment. 61 62Returns 63------- 64sample : :class:`~openturns.Sample` 65 Points :math:`(\Xi_i)_{i \in I}` which constitute the design of experiments 66 with :math:`card I = size`. The sampling method is defined by the nature of 67 the weighted experiment. 68 69Examples 70-------- 71>>> import openturns as ot 72>>> ot.RandomGenerator.SetSeed(0) 73>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) 74>>> sample = myExperiment.generate() 75>>> print(sample) 76 [ X0 X1 ] 770 : [ 0.608202 -1.26617 ] 781 : [ -0.438266 1.20548 ] 792 : [ -2.18139 0.350042 ] 803 : [ -0.355007 1.43725 ] 814 : [ 0.810668 0.793156 ]" 82%enddef 83%feature("docstring") OT::WeightedExperimentImplementation::generate 84OT_WeightedExperiment_generate_doc 85 86// --------------------------------------------------------------------- 87 88%define OT_WeightedExperiment_generateWithWeights_doc 89"Generate points and their associated weight according to the type of the experiment. 90 91Returns 92------- 93sample : :class:`~openturns.Sample` 94 The points which constitute the design of experiments. The sampling method 95 is defined by the nature of the experiment. 96weights : :class:`~openturns.Point` of size :math:`cardI` 97 Weights :math:`(\omega_i)_{i \in I}` associated with the points. By default, 98 all the weights are equal to :math:`1/cardI`. 99 100Examples 101-------- 102>>> import openturns as ot 103>>> ot.RandomGenerator.SetSeed(0) 104>>> myExperiment = ot.MonteCarloExperiment(ot.Normal(2), 5) 105>>> sample, weights = myExperiment.generateWithWeights() 106>>> print(sample) 107 [ X0 X1 ] 1080 : [ 0.608202 -1.26617 ] 1091 : [ -0.438266 1.20548 ] 1102 : [ -2.18139 0.350042 ] 1113 : [ -0.355007 1.43725 ] 1124 : [ 0.810668 0.793156 ] 113>>> print(weights) 114[0.2,0.2,0.2,0.2,0.2]" 115%enddef 116%feature("docstring") OT::WeightedExperimentImplementation::generateWithWeights 117OT_WeightedExperiment_generateWithWeights_doc 118 119// --------------------------------------------------------------------- 120 121%define OT_WeightedExperiment_getDistribution_doc 122"Accessor to the distribution. 123 124Returns 125------- 126distribution : :class:`~openturns.Distribution` 127 Distribution used to generate the set of input data." 128%enddef 129%feature("docstring") OT::WeightedExperimentImplementation::getDistribution 130OT_WeightedExperiment_getDistribution_doc 131 132// --------------------------------------------------------------------- 133 134%define OT_WeightedExperiment_setDistribution_doc 135"Accessor to the distribution. 136 137Parameters 138---------- 139distribution : :class:`~openturns.Distribution` 140 Distribution used to generate the set of input data." 141%enddef 142%feature("docstring") OT::WeightedExperimentImplementation::setDistribution 143OT_WeightedExperiment_setDistribution_doc 144 145// --------------------------------------------------------------------- 146 147%define OT_WeightedExperiment_getSize_doc 148"Accessor to the size of the generated sample. 149 150Returns 151------- 152size : positive int 153 Number :math:`cardI` of points constituting the design of experiments." 154%enddef 155%feature("docstring") OT::WeightedExperimentImplementation::getSize 156OT_WeightedExperiment_getSize_doc 157 158// --------------------------------------------------------------------- 159 160%define OT_WeightedExperiment_setSize_doc 161"Accessor to the size of the generated sample. 162 163Parameters 164---------- 165size : positive int 166 Number :math:`cardI` of points constituting the design of experiments." 167%enddef 168%feature("docstring") OT::WeightedExperimentImplementation::setSize 169OT_WeightedExperiment_setSize_doc 170 171// --------------------------------------------------------------------- 172 173%define OT_WeightedExperiment_hasUniformWeights_doc 174"Ask whether the experiment has uniform weights. 175 176Returns 177------- 178hasUniformWeights : bool 179 Whether the experiment has uniform weights." 180%enddef 181%feature("docstring") OT::WeightedExperimentImplementation::hasUniformWeights 182OT_WeightedExperiment_hasUniformWeights_doc 183