1 //$ newfft.cpp
2 
3 // This is originally by Sande and Gentleman in 1967! I have translated from
4 // Fortran into C and a little bit of C++.
5 
6 // It takes about twice as long as fftw
7 // (http://theory.lcs.mit.edu/~fftw/homepage.html)
8 // but is much shorter than fftw  and so despite its age
9 // might represent a reasonable
10 // compromise between speed and complexity.
11 // If you really need the speed get fftw.
12 
13 
14 //    THIS SUBROUTINE WAS WRITTEN BY G.SANDE OF PRINCETON UNIVERSITY AND
15 //    W.M.GENTLMAN OF THE BELL TELEPHONE LAB.  IT WAS BROUGHT TO LONDON
16 //    BY DR. M.D. GODFREY AT THE IMPERIAL COLLEGE AND WAS ADAPTED FOR
17 //    BURROUGHS 6700 BY D. R. BRILLINGER AND J. PEMBERTON
18 //    IT REPRESENTS THE STATE OF THE ART OF COMPUTING COMPLETE FINITE
19 //    DISCRETE FOURIER TRANSFORMS AS OF NOV.1967.
20 //    OTHER PROGRAMS REQUIRED.
21 //                                 ONLY THOSE SUBROUTINES INCLUDED HERE.
22 //                      USAGE.
23 //       CALL AR1DFT(N,X,Y)
24 //            WHERE  N IS THE NUMBER OF POINTS IN THE SEQUENCE .
25 //                   X - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE REAL
26 //                       PART OF THE SEQUENCE.
27 //                   Y - IS A ONE-DIMENSIONAL ARRAY CONTAINING THE
28 //                       IMAGINARY PART OF THE SEQUENCE.
29 //    THE TRANSFORM IS RETURNED IN X AND Y.
30 //            METHOD
31 //               FOR A GENERAL DISCUSSION OF THESE TRANSFORMS AND OF
32 //    THE FAST METHOD FOR COMPUTING THEM, SEE GENTLEMAN AND SANDE,
33 //    @FAST FOURIER TRANSFORMS - FOR FUN AND PROFIT,@ 1966 FALL JOINT
34 //    COMPUTER CONFERENCE.
35 //    THIS PROGRAM COMPUTES THIS FOR A COMPLEX SEQUENCE Z(T) OF LENGTH
36 //    N WHOSE ELEMENTS ARE STORED AT(X(I) , Y(I)) AND RETURNS THE
37 //    TRANSFORM COEFFICIENTS AT (X(I), Y(I)).
38 //        DESCRIPTION
39 //    AR1DFT IS A HIGHLY MODULAR ROUTINE CAPABLE OF COMPUTING IN PLACE
40 //    THE COMPLETE FINITE DISCRETE FOURIER TRANSFORM  OF A ONE-
41 //    DIMENSIONAL SEQUENCE OF RATHER GENERAL LENGTH N.
42 //       THE MAIN ROUTINE , AR1DFT ITSELF, FACTORS N. IT THEN CALLS ON
43 //    ON GR 1D FT TO COMPUTE THE ACTUAL TRANSFORMS, USING THESE FACTORS.
44 //    THIS GR 1D FT DOES, CALLING AT EACH STAGE ON THE APPROPRIATE KERN
45 //    EL R2FTK, R4FTK, R8FTK, R16FTK, R3FTK, R5FTK, OR RPFTK TO PERFORM
46 //    THE COMPUTATIONS FOR THIS PASS OVER THE SEQUENCE, DEPENDING ON
47 //    WHETHER THE CORRESPONDING FACTOR IS 2, 4, 8, 16, 3, 5, OR SOME
48 //    MORE GENERAL PRIME P. WHEN GR1DFT IS FINISHED THE TRANSFORM IS
49 //    COMPUTED, HOWEVER, THE RESULTS ARE STORED IN "DIGITS REVERSED"
50 //    ORDER. AR1DFT THEREFORE, CALLS UPON GR 1S FS TO SORT THEM OUT.
51 //    TO RETURN TO THE FACTORIZATION, SINGLETON HAS POINTED OUT THAT
52 //    THE TRANSFORMS ARE MORE EFFICIENT IF THE SAMPLE SIZE N, IS OF THE
53 //    FORM B*A**2 AND B CONSISTS OF A SINGLE FACTOR.  IN SUCH A CASE
54 //    IF WE PROCESS THE FACTORS IN THE ORDER ABA  THEN
55 //    THE REORDERING CAN BE DONE AS FAST IN PLACE, AS WITH SCRATCH
56 //    STORAGE.  BUT AS B BECOMES MORE COMPLICATED, THE COST OF THE DIGIT
57 //    REVERSING DUE TO B PART BECOMES VERY EXPENSIVE IF WE TRY TO DO IT
58 //    IN PLACE.  IN SUCH A CASE IT MIGHT BE BETTER TO USE EXTRA STORAGE
59 //    A ROUTINE TO DO THIS IS, HOWEVER, NOT INCLUDED HERE.
60 //    ANOTHER FEATURE INFLUENCING THE FACTORIZATION IS THAT FOR ANY FIXED
61 //    FACTOR N WE CAN PREPARE A SPECIAL KERNEL WHICH WILL COMPUTE
62 //    THAT STAGE OF THE TRANSFORM MORE EFFICIENTLY THAN WOULD A KERNEL
63 //    FOR GENERAL FACTORS, ESPECIALLY IF THE GENERAL KERNEL HAD TO BE
64 //    APPLIED SEVERAL TIMES. FOR EXAMPLE, FACTORS OF 4 ARE MORE
65 //    EFFICIENT THAN FACTORS OF 2, FACTORS OF 8 MORE EFFICIENT THAN 4,ETC
66 //    ON THE OTHER HAND DIMINISHING RETURNS RAPIDLY SET IN, ESPECIALLY
67 //    SINCE THE LENGTH OF THE KERNEL FOR A SPECIAL CASE IS ROUGHLY
68 //    PROPORTIONAL TO THE FACTOR IT DEALS WITH. HENCE THESE PROBABLY ARE
69 //    ALL THE KERNELS WE WISH TO HAVE.
70 //            RESTRICTIONS.
71 //    AN UNFORTUNATE FEATURE OF THE SORTING PROBLEM IS THAT THE MOST
72 //    EFFICIENT WAY TO DO IT IS WITH NESTED DO LOOPS, ONE FOR EACH
73 //    FACTOR. THIS PUTS A RESTRICTION ON N AS TO HOW MANY FACTORS IT
74 //    CAN HAVE.  CURRENTLY THE LIMIT IS 16, BUT THE LIMIT CAN BE READILY
75 //    RAISED IF NECESSARY.
76 //    A SECOND RESTRICTION OF THE PROGRAM IS THAT LOCAL STORAGE OF THE
77 //    THE ORDER P**2 IS REQUIRED BY THE GENERAL KERNEL RPFTK, SO SOME
78 //    LIMIT MUST BE SET ON P.  CURRENTLY THIS IS 19, BUT IT CAN BE INCRE
79 //    INCREASED BY TRIVIAL CHANGES.
80 //       OTHER COMMENTS.
81 //(1) THE ROUTINE IS ADAPTED TO CHECK WHETHER A GIVEN N WILL MEET THE
82 //    ABOVE FACTORING REQUIREMENTS AN, IF NOT, TO RETURN THE NEXT HIGHER
83 //    NUMBER, NX, SAY, WHICH WILL MEET THESE REQUIREMENTS.
84 //    THIS CAN BE ACCHIEVED BY   A STATEMENT OF THE FORM
85 //            CALL FACTR(N,X,Y).
86 //    IF A DIFFERENT N, SAY NX, IS RETURNED THEN THE TRANSFORMS COULD BE
87 //    OBTAINED BY EXTENDING THE SIZE OF THE X-ARRAY AND Y-ARRAY TO NX,
88 //    AND SETTING X(I) = Y(I) = 0., FOR I = N+1, NX.
89 //(2) IF THE SEQUENCE Z IS ONLY A REAL SEQUENCE, THEN THE IMAGINARY PART
90 //    Y(I)=0., THIS WILL RETURN THE COSINE TRANSFORM OF THE REAL SEQUENCE
91 //    IN X, AND THE SINE TRANSFORM IN Y.
92 
93 
94 #define WANT_STREAM
95 
96 #define WANT_MATH
97 
98 #include "newmatap.h"
99 
100 #ifdef use_namespace
101 namespace NEWMAT {
102 #endif
103 
104 #ifdef DO_REPORT
105 #define REPORT { static ExeCounter ExeCount(__LINE__,20); ++ExeCount; }
106 #else
107 #define REPORT {}
108 #endif
109 
square(Real x)110 inline Real square(Real x) { return x*x; }
square(int x)111 inline int square(int x) { return x*x; }
112 
113 static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
114    const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
115    Real* X, Real* Y);
116 static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
117    Real* X, Real* Y);
118 static void R_P_FTK (int N, int M, int P, Real* X, Real* Y);
119 static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1);
120 static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
121    Real* X2, Real* Y2);
122 static void R_4_FTK (int N, int M,
123    Real* X0, Real* Y0, Real* X1, Real* Y1,
124    Real* X2, Real* Y2, Real* X3, Real* Y3);
125 static void R_5_FTK (int N, int M,
126    Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
127    Real* X3, Real* Y3, Real* X4, Real* Y4);
128 static void R_8_FTK (int N, int M,
129    Real* X0, Real* Y0, Real* X1, Real* Y1,
130    Real* X2, Real* Y2, Real* X3, Real* Y3,
131    Real* X4, Real* Y4, Real* X5, Real* Y5,
132    Real* X6, Real* Y6, Real* X7, Real* Y7);
133 static void R_16_FTK (int N, int M,
134    Real* X0, Real* Y0, Real* X1, Real* Y1,
135    Real* X2, Real* Y2, Real* X3, Real* Y3,
136    Real* X4, Real* Y4, Real* X5, Real* Y5,
137    Real* X6, Real* Y6, Real* X7, Real* Y7,
138    Real* X8, Real* Y8, Real* X9, Real* Y9,
139    Real* X10, Real* Y10, Real* X11, Real* Y11,
140    Real* X12, Real* Y12, Real* X13, Real* Y13,
141    Real* X14, Real* Y14, Real* X15, Real* Y15);
142 static int BitReverse(int x, int prod, int n, const SimpleIntArray& f);
143 
144 
ar_1d_ft(int PTS,Real * X,Real * Y)145 bool FFT_Controller::ar_1d_ft (int PTS, Real* X, Real *Y)
146 {
147 //    ARBITRARY RADIX ONE DIMENSIONAL FOURIER TRANSFORM
148 
149    REPORT
150 
151    int  F,J,N,NF,P,PMAX,P_SYM,P_TWO,Q,R,TWO_GRP;
152 
153    // NP is maximum number of squared factors allows PTS up to 2**32 at least
154    // NQ is number of not-squared factors - increase if we increase PMAX
155    const int NP = 16, NQ = 10;
156    SimpleIntArray PP(NP), QQ(NQ);
157 
158    TWO_GRP=16; PMAX=19;
159 
160    // PMAX is the maximum factor size
161    // TWO_GRP is the maximum power of 2 handled as a single factor
162    // Doesn't take advantage of combining powers of 2 when calculating
163    // number of factors
164 
165    if (PTS<=1) return true;
166    N=PTS; P_SYM=1; F=2; P=0; Q=0;
167 
168    // P counts the number of squared factors
169    // Q counts the number of the rest
170    // R = 0 for no non-squared factors; 1 otherwise
171 
172    // FACTOR holds all the factors - non-squared ones in the middle
173    //   - length is 2*P+Q
174    // SYM also holds all the factors but with the non-squared ones
175    //   multiplied together - length is 2*P+R
176    // PP holds the values of the squared factors - length is P
177    // QQ holds the values of the rest - length is Q
178 
179    // P_SYM holds the product of the squared factors
180 
181    // find the factors - load into PP and QQ
182    while (N > 1)
183    {
184       bool fail = true;
185       for (J=F; J<=PMAX; J++)
186          if (N % J == 0) { fail = false; F=J; break; }
187       if (fail || P >= NP || Q >= NQ) return false; // can't factor
188       N /= F;
189       if (N % F != 0) QQ[Q++] = F;
190       else { N /= F; PP[P++] = F; P_SYM *= F; }
191    }
192 
193    R = (Q == 0) ? 0 : 1;  // R = 0 if no not-squared factors, 1 otherwise
194 
195    NF = 2*P + Q;
196    SimpleIntArray FACTOR(NF + 1), SYM(2*P + R);
197    FACTOR[NF] = 0;                // we need this in the "combine powers of 2"
198 
199    // load into SYM and FACTOR
200    for (J=0; J<P; J++)
201       { SYM[J]=FACTOR[J]=PP[P-1-J]; FACTOR[P+Q+J]=SYM[P+R+J]=PP[J]; }
202 
203    if (Q>0)
204    {
205       REPORT
206       for (J=0; J<Q; J++) FACTOR[P+J]=QQ[J];
207       SYM[P]=PTS/square(P_SYM);
208    }
209 
210    // combine powers of 2
211    P_TWO = 1;
212    for (J=0; J < NF; J++)
213    {
214       if (FACTOR[J]!=2) continue;
215       P_TWO=P_TWO*2; FACTOR[J]=1;
216       if (P_TWO<TWO_GRP && FACTOR[J+1]==2) continue;
217       FACTOR[J]=P_TWO; P_TWO=1;
218    }
219 
220    if (P==0) R=0;
221    if (Q<=1) Q=0;
222 
223    // do the analysis
224    GR_1D_FT(PTS,NF,FACTOR,X,Y);                 // the transform
225    GR_1D_FS(PTS,2*P+R,Q,SYM,P_SYM,QQ,X,Y);      // the reshuffling
226 
227    return true;
228 
229 }
230 
GR_1D_FS(int PTS,int N_SYM,int N_UN_SYM,const SimpleIntArray & SYM,int P_SYM,const SimpleIntArray & UN_SYM,Real * X,Real * Y)231 static void GR_1D_FS (int PTS, int N_SYM, int N_UN_SYM,
232    const SimpleIntArray& SYM, int P_SYM, const SimpleIntArray& UN_SYM,
233    Real* X, Real* Y)
234 {
235 //    GENERAL RADIX ONE DIMENSIONAL FOURIER SORT
236 
237 // PTS = number of points
238 // N_SYM = length of SYM
239 // N_UN_SYM = length of UN_SYM
240 // SYM: squared factors + product of non-squared factors + squared factors
241 // P_SYM = product of squared factors (each included only once)
242 // UN_SYM: not-squared factors
243 
244    REPORT
245 
246    Real T;
247    int  JJ,KK,P_UN_SYM;
248 
249    // I have replaced the multiple for-loop used by Sande-Gentleman code
250    // by the following code which does not limit the number of factors
251 
252    if (N_SYM > 0)
253    {
254       REPORT
255       SimpleIntArray U(N_SYM);
256       for(MultiRadixCounter MRC(N_SYM, SYM, U); !MRC.Finish(); ++MRC)
257       {
258          if (MRC.Swap())
259          {
260             int P = MRC.Reverse(); int JJ = MRC.Counter(); Real T;
261             T=X[JJ]; X[JJ]=X[P]; X[P]=T; T=Y[JJ]; Y[JJ]=Y[P]; Y[P]=T;
262          }
263       }
264    }
265 
266    int J,JL,K,L,M,MS;
267 
268    // UN_SYM contains the non-squared factors
269    // I have replaced the Sande-Gentleman code as it runs into
270    // integer overflow problems
271    // My code (and theirs) would be improved by using a bit array
272    // as suggested by Van Loan
273 
274    if (N_UN_SYM==0) { REPORT return; }
275    P_UN_SYM=PTS/square(P_SYM); JL=(P_UN_SYM-3)*P_SYM; MS=P_UN_SYM*P_SYM;
276 
277    for (J = P_SYM; J<=JL; J+=P_SYM)
278    {
279       K=J;
280       do K = P_SYM * BitReverse(K / P_SYM, P_UN_SYM, N_UN_SYM, UN_SYM);
281       while (K<J);
282 
283       if (K!=J)
284       {
285          REPORT
286          for (L=0; L<P_SYM; L++) for (M=L; M<PTS; M+=MS)
287          {
288             JJ=M+J; KK=M+K;
289             T=X[JJ]; X[JJ]=X[KK]; X[KK]=T; T=Y[JJ]; Y[JJ]=Y[KK]; Y[KK]=T;
290          }
291       }
292    }
293 
294    return;
295 }
296 
GR_1D_FT(int N,int N_FACTOR,const SimpleIntArray & FACTOR,Real * X,Real * Y)297 static void GR_1D_FT (int N, int N_FACTOR, const SimpleIntArray& FACTOR,
298    Real* X, Real* Y)
299 {
300 //    GENERAL RADIX ONE DIMENSIONAL FOURIER TRANSFORM;
301 
302    REPORT
303 
304    int  M = N;
305 
306    for (int i = 0; i < N_FACTOR; i++)
307    {
308       int P = FACTOR[i]; M /= P;
309 
310       switch(P)
311       {
312       case 1: REPORT break;
313       case 2: REPORT R_2_FTK (N,M,X,Y,X+M,Y+M); break;
314       case 3: REPORT R_3_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M); break;
315       case 4: REPORT R_4_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M); break;
316       case 5:
317          REPORT
318          R_5_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,X+3*M,Y+3*M,X+4*M,Y+4*M);
319          break;
320       case 8:
321          REPORT
322          R_8_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
323             X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
324             X+6*M,Y+6*M,X+7*M,Y+7*M);
325          break;
326       case 16:
327          REPORT
328          R_16_FTK (N,M,X,Y,X+M,Y+M,X+2*M,Y+2*M,
329             X+3*M,Y+3*M,X+4*M,Y+4*M,X+5*M,Y+5*M,
330             X+6*M,Y+6*M,X+7*M,Y+7*M,X+8*M,Y+8*M,
331             X+9*M,Y+9*M,X+10*M,Y+10*M,X+11*M,Y+11*M,
332             X+12*M,Y+12*M,X+13*M,Y+13*M,X+14*M,Y+14*M,
333             X+15*M,Y+15*M);
334          break;
335       default: REPORT R_P_FTK (N,M,P,X,Y); break;
336       }
337    }
338 
339 }
340 
R_P_FTK(int N,int M,int P,Real * X,Real * Y)341 static void R_P_FTK (int N, int M, int P, Real* X, Real* Y)
342 //    RADIX PRIME FOURIER TRANSFORM KERNEL;
343 // X and Y are treated as M * P matrices with Fortran storage
344 {
345    REPORT
346    bool NO_FOLD,ZERO;
347    Real ANGLE,IS,IU,RS,RU,T,TWOPI,XT,YT;
348    int  J,JJ,K0,K,M_OVER_2,MP,PM,PP,U,V;
349 
350    Real AA [9][9], BB [9][9];
351    Real A [18], B [18], C [18], S [18];
352    Real IA [9], IB [9], RA [9], RB [9];
353 
354    TWOPI=8.0*atan(1.0);
355    M_OVER_2=M/2+1; MP=M*P; PP=P/2; PM=P-1;
356 
357    for (U=0; U<PP; U++)
358    {
359       ANGLE=TWOPI*Real(U+1)/Real(P);
360       JJ=P-U-2;
361       A[U]=cos(ANGLE); B[U]=sin(ANGLE);
362       A[JJ]=A[U]; B[JJ]= -B[U];
363    }
364 
365    for (U=1; U<=PP; U++)
366    {
367       for (V=1; V<=PP; V++)
368          { JJ=U*V-U*V/P*P; AA[V-1][U-1]=A[JJ-1]; BB[V-1][U-1]=B[JJ-1]; }
369    }
370 
371    for (J=0; J<M_OVER_2; J++)
372    {
373       NO_FOLD = (J==0 || 2*J==M);
374       K0=J;
375       ANGLE=TWOPI*Real(J)/Real(MP); ZERO=ANGLE==0.0;
376       C[0]=cos(ANGLE); S[0]=sin(ANGLE);
377       for (U=1; U<PM; U++)
378       {
379          C[U]=C[U-1]*C[0]-S[U-1]*S[0];
380          S[U]=S[U-1]*C[0]+C[U-1]*S[0];
381       }
382       goto L700;
383    L500:
384       REPORT
385       if (NO_FOLD) { REPORT goto L1500; }
386       REPORT
387       NO_FOLD=true; K0=M-J;
388       for (U=0; U<PM; U++)
389          { T=C[U]*A[U]+S[U]*B[U]; S[U]= -S[U]*A[U]+C[U]*B[U]; C[U]=T; }
390    L700:
391       REPORT
392       for (K=K0; K<N; K+=MP)
393       {
394          XT=X[K]; YT=Y[K];
395          for (U=1; U<=PP; U++)
396          {
397             RA[U-1]=XT; IA[U-1]=YT;
398             RB[U-1]=0.0; IB[U-1]=0.0;
399          }
400          for (U=1; U<=PP; U++)
401          {
402             JJ=P-U;
403             RS=X[K+M*U]+X[K+M*JJ]; IS=Y[K+M*U]+Y[K+M*JJ];
404             RU=X[K+M*U]-X[K+M*JJ]; IU=Y[K+M*U]-Y[K+M*JJ];
405             XT=XT+RS; YT=YT+IS;
406             for (V=0; V<PP; V++)
407             {
408                RA[V]=RA[V]+RS*AA[V][U-1]; IA[V]=IA[V]+IS*AA[V][U-1];
409                RB[V]=RB[V]+RU*BB[V][U-1]; IB[V]=IB[V]+IU*BB[V][U-1];
410             }
411          }
412          X[K]=XT; Y[K]=YT;
413          for (U=1; U<=PP; U++)
414          {
415             if (!ZERO)
416             {
417                REPORT
418                XT=RA[U-1]+IB[U-1]; YT=IA[U-1]-RB[U-1];
419                X[K+M*U]=XT*C[U-1]+YT*S[U-1]; Y[K+M*U]=YT*C[U-1]-XT*S[U-1];
420                JJ=P-U;
421                XT=RA[U-1]-IB[U-1]; YT=IA[U-1]+RB[U-1];
422                X[K+M*JJ]=XT*C[JJ-1]+YT*S[JJ-1];
423                Y[K+M*JJ]=YT*C[JJ-1]-XT*S[JJ-1];
424             }
425             else
426             {
427                REPORT
428                X[K+M*U]=RA[U-1]+IB[U-1]; Y[K+M*U]=IA[U-1]-RB[U-1];
429                JJ=P-U;
430                X[K+M*JJ]=RA[U-1]-IB[U-1]; Y[K+M*JJ]=IA[U-1]+RB[U-1];
431             }
432          }
433       }
434       goto L500;
435 L1500: ;
436    }
437    return;
438 }
439 
R_2_FTK(int N,int M,Real * X0,Real * Y0,Real * X1,Real * Y1)440 static void R_2_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1)
441 //    RADIX TWO FOURIER TRANSFORM KERNEL;
442 {
443    REPORT
444    bool NO_FOLD,ZERO;
445    int  J,K,K0,M2,M_OVER_2;
446    Real ANGLE,C,IS,IU,RS,RU,S,TWOPI;
447 
448    M2=M*2; M_OVER_2=M/2+1;
449    TWOPI=8.0*atan(1.0);
450 
451    for (J=0; J<M_OVER_2; J++)
452    {
453       NO_FOLD = (J==0 || 2*J==M);
454       K0=J;
455       ANGLE=TWOPI*Real(J)/Real(M2); ZERO=ANGLE==0.0;
456       C=cos(ANGLE); S=sin(ANGLE);
457       goto L200;
458    L100:
459       REPORT
460       if (NO_FOLD) { REPORT goto L600; }
461       REPORT
462       NO_FOLD=true; K0=M-J; C= -C;
463    L200:
464       REPORT
465       for (K=K0; K<N; K+=M2)
466       {
467          RS=X0[K]+X1[K]; IS=Y0[K]+Y1[K];
468          RU=X0[K]-X1[K]; IU=Y0[K]-Y1[K];
469          X0[K]=RS; Y0[K]=IS;
470          if (!ZERO) { X1[K]=RU*C+IU*S; Y1[K]=IU*C-RU*S; }
471          else { X1[K]=RU; Y1[K]=IU; }
472       }
473       goto L100;
474    L600: ;
475    }
476 
477    return;
478 }
479 
R_3_FTK(int N,int M,Real * X0,Real * Y0,Real * X1,Real * Y1,Real * X2,Real * Y2)480 static void R_3_FTK (int N, int M, Real* X0, Real* Y0, Real* X1, Real* Y1,
481    Real* X2, Real* Y2)
482 //    RADIX THREE FOURIER TRANSFORM KERNEL
483 {
484    REPORT
485    bool NO_FOLD,ZERO;
486    int  J,K,K0,M3,M_OVER_2;
487    Real ANGLE,A,B,C1,C2,S1,S2,T,TWOPI;
488    Real I0,I1,I2,IA,IB,IS,R0,R1,R2,RA,RB,RS;
489 
490    M3=M*3; M_OVER_2=M/2+1; TWOPI=8.0*atan(1.0);
491    A=cos(TWOPI/3.0); B=sin(TWOPI/3.0);
492 
493    for (J=0; J<M_OVER_2; J++)
494    {
495       NO_FOLD = (J==0 || 2*J==M);
496       K0=J;
497       ANGLE=TWOPI*Real(J)/Real(M3); ZERO=ANGLE==0.0;
498       C1=cos(ANGLE); S1=sin(ANGLE);
499       C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
500       goto L200;
501    L100:
502       REPORT
503       if (NO_FOLD) { REPORT goto L600; }
504       REPORT
505       NO_FOLD=true; K0=M-J;
506       T=C1*A+S1*B; S1=C1*B-S1*A; C1=T;
507       T=C2*A-S2*B; S2= -C2*B-S2*A; C2=T;
508    L200:
509       REPORT
510       for (K=K0; K<N; K+=M3)
511       {
512          R0 = X0[K]; I0 = Y0[K];
513          RS=X1[K]+X2[K]; IS=Y1[K]+Y2[K];
514          X0[K]=R0+RS; Y0[K]=I0+IS;
515          RA=R0+RS*A; IA=I0+IS*A;
516          RB=(X1[K]-X2[K])*B; IB=(Y1[K]-Y2[K])*B;
517          if (!ZERO)
518          {
519             REPORT
520             R1=RA+IB; I1=IA-RB; R2=RA-IB; I2=IA+RB;
521             X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
522             X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
523          }
524          else { REPORT X1[K]=RA+IB; Y1[K]=IA-RB; X2[K]=RA-IB; Y2[K]=IA+RB; }
525       }
526       goto L100;
527    L600: ;
528    }
529 
530    return;
531 }
532 
R_4_FTK(int N,int M,Real * X0,Real * Y0,Real * X1,Real * Y1,Real * X2,Real * Y2,Real * X3,Real * Y3)533 static void R_4_FTK (int N, int M,
534    Real* X0, Real* Y0, Real* X1, Real* Y1,
535    Real* X2, Real* Y2, Real* X3, Real* Y3)
536 //    RADIX FOUR FOURIER TRANSFORM KERNEL
537 {
538    REPORT
539    bool NO_FOLD,ZERO;
540    int  J,K,K0,M4,M_OVER_2;
541    Real ANGLE,C1,C2,C3,S1,S2,S3,T,TWOPI;
542    Real I1,I2,I3,IS0,IS1,IU0,IU1,R1,R2,R3,RS0,RS1,RU0,RU1;
543 
544    M4=M*4; M_OVER_2=M/2+1;
545    TWOPI=8.0*atan(1.0);
546 
547    for (J=0; J<M_OVER_2; J++)
548    {
549       NO_FOLD = (J==0 || 2*J==M);
550       K0=J;
551       ANGLE=TWOPI*Real(J)/Real(M4); ZERO=ANGLE==0.0;
552       C1=cos(ANGLE); S1=sin(ANGLE);
553       C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
554       C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
555       goto L200;
556    L100:
557       REPORT
558       if (NO_FOLD) { REPORT goto L600; }
559       REPORT
560       NO_FOLD=true; K0=M-J;
561       T=C1; C1=S1; S1=T;
562       C2= -C2;
563       T=C3; C3= -S3; S3= -T;
564    L200:
565       REPORT
566       for (K=K0; K<N; K+=M4)
567       {
568          RS0=X0[K]+X2[K]; IS0=Y0[K]+Y2[K];
569          RU0=X0[K]-X2[K]; IU0=Y0[K]-Y2[K];
570          RS1=X1[K]+X3[K]; IS1=Y1[K]+Y3[K];
571          RU1=X1[K]-X3[K]; IU1=Y1[K]-Y3[K];
572          X0[K]=RS0+RS1; Y0[K]=IS0+IS1;
573          if (!ZERO)
574          {
575             REPORT
576             R1=RU0+IU1; I1=IU0-RU1;
577             R2=RS0-RS1; I2=IS0-IS1;
578             R3=RU0-IU1; I3=IU0+RU1;
579             X2[K]=R1*C1+I1*S1; Y2[K]=I1*C1-R1*S1;
580             X1[K]=R2*C2+I2*S2; Y1[K]=I2*C2-R2*S2;
581             X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
582          }
583          else
584          {
585             REPORT
586             X2[K]=RU0+IU1; Y2[K]=IU0-RU1;
587             X1[K]=RS0-RS1; Y1[K]=IS0-IS1;
588             X3[K]=RU0-IU1; Y3[K]=IU0+RU1;
589          }
590       }
591       goto L100;
592    L600: ;
593    }
594 
595    return;
596 }
597 
R_5_FTK(int N,int M,Real * X0,Real * Y0,Real * X1,Real * Y1,Real * X2,Real * Y2,Real * X3,Real * Y3,Real * X4,Real * Y4)598 static void R_5_FTK (int N, int M,
599    Real* X0, Real* Y0, Real* X1, Real* Y1, Real* X2, Real* Y2,
600    Real* X3, Real* Y3, Real* X4, Real* Y4)
601 //    RADIX FIVE FOURIER TRANSFORM KERNEL
602 
603 {
604    REPORT
605    bool NO_FOLD,ZERO;
606    int  J,K,K0,M5,M_OVER_2;
607    Real ANGLE,A1,A2,B1,B2,C1,C2,C3,C4,S1,S2,S3,S4,T,TWOPI;
608    Real R0,R1,R2,R3,R4,RA1,RA2,RB1,RB2,RS1,RS2,RU1,RU2;
609    Real I0,I1,I2,I3,I4,IA1,IA2,IB1,IB2,IS1,IS2,IU1,IU2;
610 
611    M5=M*5; M_OVER_2=M/2+1;
612    TWOPI=8.0*atan(1.0);
613    A1=cos(TWOPI/5.0); B1=sin(TWOPI/5.0);
614    A2=cos(2.0*TWOPI/5.0); B2=sin(2.0*TWOPI/5.0);
615 
616    for (J=0; J<M_OVER_2; J++)
617    {
618       NO_FOLD = (J==0 || 2*J==M);
619       K0=J;
620       ANGLE=TWOPI*Real(J)/Real(M5); ZERO=ANGLE==0.0;
621       C1=cos(ANGLE); S1=sin(ANGLE);
622       C2=C1*C1-S1*S1; S2=S1*C1+C1*S1;
623       C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
624       C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
625       goto L200;
626    L100:
627       REPORT
628       if (NO_FOLD) { REPORT goto L600; }
629       REPORT
630       NO_FOLD=true; K0=M-J;
631       T=C1*A1+S1*B1; S1=C1*B1-S1*A1; C1=T;
632       T=C2*A2+S2*B2; S2=C2*B2-S2*A2; C2=T;
633       T=C3*A2-S3*B2; S3= -C3*B2-S3*A2; C3=T;
634       T=C4*A1-S4*B1; S4= -C4*B1-S4*A1; C4=T;
635    L200:
636       REPORT
637       for (K=K0; K<N; K+=M5)
638       {
639          R0=X0[K]; I0=Y0[K];
640          RS1=X1[K]+X4[K]; IS1=Y1[K]+Y4[K];
641          RU1=X1[K]-X4[K]; IU1=Y1[K]-Y4[K];
642          RS2=X2[K]+X3[K]; IS2=Y2[K]+Y3[K];
643          RU2=X2[K]-X3[K]; IU2=Y2[K]-Y3[K];
644          X0[K]=R0+RS1+RS2; Y0[K]=I0+IS1+IS2;
645          RA1=R0+RS1*A1+RS2*A2; IA1=I0+IS1*A1+IS2*A2;
646          RA2=R0+RS1*A2+RS2*A1; IA2=I0+IS1*A2+IS2*A1;
647          RB1=RU1*B1+RU2*B2; IB1=IU1*B1+IU2*B2;
648          RB2=RU1*B2-RU2*B1; IB2=IU1*B2-IU2*B1;
649          if (!ZERO)
650          {
651             REPORT
652             R1=RA1+IB1; I1=IA1-RB1;
653             R2=RA2+IB2; I2=IA2-RB2;
654             R3=RA2-IB2; I3=IA2+RB2;
655             R4=RA1-IB1; I4=IA1+RB1;
656             X1[K]=R1*C1+I1*S1; Y1[K]=I1*C1-R1*S1;
657             X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
658             X3[K]=R3*C3+I3*S3; Y3[K]=I3*C3-R3*S3;
659             X4[K]=R4*C4+I4*S4; Y4[K]=I4*C4-R4*S4;
660          }
661          else
662          {
663             REPORT
664             X1[K]=RA1+IB1; Y1[K]=IA1-RB1;
665             X2[K]=RA2+IB2; Y2[K]=IA2-RB2;
666             X3[K]=RA2-IB2; Y3[K]=IA2+RB2;
667             X4[K]=RA1-IB1; Y4[K]=IA1+RB1;
668          }
669       }
670       goto L100;
671    L600: ;
672    }
673 
674    return;
675 }
676 
R_8_FTK(int N,int M,Real * X0,Real * Y0,Real * X1,Real * Y1,Real * X2,Real * Y2,Real * X3,Real * Y3,Real * X4,Real * Y4,Real * X5,Real * Y5,Real * X6,Real * Y6,Real * X7,Real * Y7)677 static void R_8_FTK (int N, int M,
678    Real* X0, Real* Y0, Real* X1, Real* Y1,
679    Real* X2, Real* Y2, Real* X3, Real* Y3,
680    Real* X4, Real* Y4, Real* X5, Real* Y5,
681    Real* X6, Real* Y6, Real* X7, Real* Y7)
682 //    RADIX EIGHT FOURIER TRANSFORM KERNEL
683 {
684    REPORT
685    bool NO_FOLD,ZERO;
686    int  J,K,K0,M8,M_OVER_2;
687    Real ANGLE,C1,C2,C3,C4,C5,C6,C7,E,S1,S2,S3,S4,S5,S6,S7,T,TWOPI;
688    Real R1,R2,R3,R4,R5,R6,R7,RS0,RS1,RS2,RS3,RU0,RU1,RU2,RU3;
689    Real I1,I2,I3,I4,I5,I6,I7,IS0,IS1,IS2,IS3,IU0,IU1,IU2,IU3;
690    Real RSS0,RSS1,RSU0,RSU1,RUS0,RUS1,RUU0,RUU1;
691    Real ISS0,ISS1,ISU0,ISU1,IUS0,IUS1,IUU0,IUU1;
692 
693    M8=M*8; M_OVER_2=M/2+1;
694    TWOPI=8.0*atan(1.0); E=cos(TWOPI/8.0);
695 
696    for (J=0;J<M_OVER_2;J++)
697    {
698       NO_FOLD= (J==0 || 2*J==M);
699       K0=J;
700       ANGLE=TWOPI*Real(J)/Real(M8); ZERO=ANGLE==0.0;
701       C1=cos(ANGLE); S1=sin(ANGLE);
702       C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
703       C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
704       C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
705       C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
706       C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
707       C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
708       goto L200;
709    L100:
710       REPORT
711       if (NO_FOLD) { REPORT goto L600; }
712       REPORT
713       NO_FOLD=true; K0=M-J;
714       T=(C1+S1)*E; S1=(C1-S1)*E; C1=T;
715       T=S2; S2=C2; C2=T;
716       T=(-C3+S3)*E; S3=(C3+S3)*E; C3=T;
717       C4= -C4;
718       T= -(C5+S5)*E; S5=(-C5+S5)*E; C5=T;
719       T= -S6; S6= -C6; C6=T;
720       T=(C7-S7)*E; S7= -(C7+S7)*E; C7=T;
721    L200:
722       REPORT
723       for (K=K0; K<N; K+=M8)
724       {
725          RS0=X0[K]+X4[K]; IS0=Y0[K]+Y4[K];
726          RU0=X0[K]-X4[K]; IU0=Y0[K]-Y4[K];
727          RS1=X1[K]+X5[K]; IS1=Y1[K]+Y5[K];
728          RU1=X1[K]-X5[K]; IU1=Y1[K]-Y5[K];
729          RS2=X2[K]+X6[K]; IS2=Y2[K]+Y6[K];
730          RU2=X2[K]-X6[K]; IU2=Y2[K]-Y6[K];
731          RS3=X3[K]+X7[K]; IS3=Y3[K]+Y7[K];
732          RU3=X3[K]-X7[K]; IU3=Y3[K]-Y7[K];
733          RSS0=RS0+RS2; ISS0=IS0+IS2;
734          RSU0=RS0-RS2; ISU0=IS0-IS2;
735          RSS1=RS1+RS3; ISS1=IS1+IS3;
736          RSU1=RS1-RS3; ISU1=IS1-IS3;
737          RUS0=RU0-IU2; IUS0=IU0+RU2;
738          RUU0=RU0+IU2; IUU0=IU0-RU2;
739          RUS1=RU1-IU3; IUS1=IU1+RU3;
740          RUU1=RU1+IU3; IUU1=IU1-RU3;
741          T=(RUS1+IUS1)*E; IUS1=(IUS1-RUS1)*E; RUS1=T;
742          T=(RUU1+IUU1)*E; IUU1=(IUU1-RUU1)*E; RUU1=T;
743          X0[K]=RSS0+RSS1; Y0[K]=ISS0+ISS1;
744          if (!ZERO)
745          {
746             REPORT
747             R1=RUU0+RUU1; I1=IUU0+IUU1;
748             R2=RSU0+ISU1; I2=ISU0-RSU1;
749             R3=RUS0+IUS1; I3=IUS0-RUS1;
750             R4=RSS0-RSS1; I4=ISS0-ISS1;
751             R5=RUU0-RUU1; I5=IUU0-IUU1;
752             R6=RSU0-ISU1; I6=ISU0+RSU1;
753             R7=RUS0-IUS1; I7=IUS0+RUS1;
754             X4[K]=R1*C1+I1*S1; Y4[K]=I1*C1-R1*S1;
755             X2[K]=R2*C2+I2*S2; Y2[K]=I2*C2-R2*S2;
756             X6[K]=R3*C3+I3*S3; Y6[K]=I3*C3-R3*S3;
757             X1[K]=R4*C4+I4*S4; Y1[K]=I4*C4-R4*S4;
758             X5[K]=R5*C5+I5*S5; Y5[K]=I5*C5-R5*S5;
759             X3[K]=R6*C6+I6*S6; Y3[K]=I6*C6-R6*S6;
760             X7[K]=R7*C7+I7*S7; Y7[K]=I7*C7-R7*S7;
761          }
762          else
763          {
764             REPORT
765             X4[K]=RUU0+RUU1; Y4[K]=IUU0+IUU1;
766             X2[K]=RSU0+ISU1; Y2[K]=ISU0-RSU1;
767             X6[K]=RUS0+IUS1; Y6[K]=IUS0-RUS1;
768             X1[K]=RSS0-RSS1; Y1[K]=ISS0-ISS1;
769             X5[K]=RUU0-RUU1; Y5[K]=IUU0-IUU1;
770             X3[K]=RSU0-ISU1; Y3[K]=ISU0+RSU1;
771             X7[K]=RUS0-IUS1; Y7[K]=IUS0+RUS1;
772          }
773       }
774       goto L100;
775    L600: ;
776    }
777 
778    return;
779 }
780 
R_16_FTK(int N,int M,Real * X0,Real * Y0,Real * X1,Real * Y1,Real * X2,Real * Y2,Real * X3,Real * Y3,Real * X4,Real * Y4,Real * X5,Real * Y5,Real * X6,Real * Y6,Real * X7,Real * Y7,Real * X8,Real * Y8,Real * X9,Real * Y9,Real * X10,Real * Y10,Real * X11,Real * Y11,Real * X12,Real * Y12,Real * X13,Real * Y13,Real * X14,Real * Y14,Real * X15,Real * Y15)781 static void R_16_FTK (int N, int M,
782    Real* X0, Real* Y0, Real* X1, Real* Y1,
783    Real* X2, Real* Y2, Real* X3, Real* Y3,
784    Real* X4, Real* Y4, Real* X5, Real* Y5,
785    Real* X6, Real* Y6, Real* X7, Real* Y7,
786    Real* X8, Real* Y8, Real* X9, Real* Y9,
787    Real* X10, Real* Y10, Real* X11, Real* Y11,
788    Real* X12, Real* Y12, Real* X13, Real* Y13,
789    Real* X14, Real* Y14, Real* X15, Real* Y15)
790 //    RADIX SIXTEEN FOURIER TRANSFORM KERNEL
791 {
792    REPORT
793    bool NO_FOLD,ZERO;
794    int  J,K,K0,M16,M_OVER_2;
795    Real ANGLE,EI1,ER1,E2,EI3,ER3,EI5,ER5,T,TWOPI;
796    Real RS0,RS1,RS2,RS3,RS4,RS5,RS6,RS7;
797    Real IS0,IS1,IS2,IS3,IS4,IS5,IS6,IS7;
798    Real RU0,RU1,RU2,RU3,RU4,RU5,RU6,RU7;
799    Real IU0,IU1,IU2,IU3,IU4,IU5,IU6,IU7;
800    Real RUS0,RUS1,RUS2,RUS3,RUU0,RUU1,RUU2,RUU3;
801    Real ISS0,ISS1,ISS2,ISS3,ISU0,ISU1,ISU2,ISU3;
802    Real RSS0,RSS1,RSS2,RSS3,RSU0,RSU1,RSU2,RSU3;
803    Real IUS0,IUS1,IUS2,IUS3,IUU0,IUU1,IUU2,IUU3;
804    Real RSSS0,RSSS1,RSSU0,RSSU1,RSUS0,RSUS1,RSUU0,RSUU1;
805    Real ISSS0,ISSS1,ISSU0,ISSU1,ISUS0,ISUS1,ISUU0,ISUU1;
806    Real RUSS0,RUSS1,RUSU0,RUSU1,RUUS0,RUUS1,RUUU0,RUUU1;
807    Real IUSS0,IUSS1,IUSU0,IUSU1,IUUS0,IUUS1,IUUU0,IUUU1;
808    Real R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15;
809    Real I1,I2,I3,I4,I5,I6,I7,I8,I9,I10,I11,I12,I13,I14,I15;
810    Real C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,C14,C15;
811    Real S1,S2,S3,S4,S5,S6,S7,S8,S9,S10,S11,S12,S13,S14,S15;
812 
813    M16=M*16; M_OVER_2=M/2+1;
814    TWOPI=8.0*atan(1.0);
815    ER1=cos(TWOPI/16.0); EI1=sin(TWOPI/16.0);
816    E2=cos(TWOPI/8.0);
817    ER3=cos(3.0*TWOPI/16.0); EI3=sin(3.0*TWOPI/16.0);
818    ER5=cos(5.0*TWOPI/16.0); EI5=sin(5.0*TWOPI/16.0);
819 
820    for (J=0; J<M_OVER_2; J++)
821    {
822       NO_FOLD = (J==0 || 2*J==M);
823       K0=J;
824       ANGLE=TWOPI*Real(J)/Real(M16);
825       ZERO=ANGLE==0.0;
826       C1=cos(ANGLE); S1=sin(ANGLE);
827       C2=C1*C1-S1*S1; S2=C1*S1+S1*C1;
828       C3=C2*C1-S2*S1; S3=S2*C1+C2*S1;
829       C4=C2*C2-S2*S2; S4=S2*C2+C2*S2;
830       C5=C4*C1-S4*S1; S5=S4*C1+C4*S1;
831       C6=C4*C2-S4*S2; S6=S4*C2+C4*S2;
832       C7=C4*C3-S4*S3; S7=S4*C3+C4*S3;
833       C8=C4*C4-S4*S4; S8=C4*S4+S4*C4;
834       C9=C8*C1-S8*S1; S9=S8*C1+C8*S1;
835       C10=C8*C2-S8*S2; S10=S8*C2+C8*S2;
836       C11=C8*C3-S8*S3; S11=S8*C3+C8*S3;
837       C12=C8*C4-S8*S4; S12=S8*C4+C8*S4;
838       C13=C8*C5-S8*S5; S13=S8*C5+C8*S5;
839       C14=C8*C6-S8*S6; S14=S8*C6+C8*S6;
840       C15=C8*C7-S8*S7; S15=S8*C7+C8*S7;
841       goto L200;
842    L100:
843       REPORT
844       if (NO_FOLD) { REPORT goto L600; }
845       REPORT
846       NO_FOLD=true; K0=M-J;
847       T=C1*ER1+S1*EI1; S1= -S1*ER1+C1*EI1; C1=T;
848       T=(C2+S2)*E2; S2=(C2-S2)*E2; C2=T;
849       T=C3*ER3+S3*EI3; S3= -S3*ER3+C3*EI3; C3=T;
850       T=S4; S4=C4; C4=T;
851       T=S5*ER1-C5*EI1; S5=C5*ER1+S5*EI1; C5=T;
852       T=(-C6+S6)*E2; S6=(C6+S6)*E2; C6=T;
853       T=S7*ER3-C7*EI3; S7=C7*ER3+S7*EI3; C7=T;
854       C8= -C8;
855       T= -(C9*ER1+S9*EI1); S9=S9*ER1-C9*EI1; C9=T;
856       T= -(C10+S10)*E2; S10=(-C10+S10)*E2; C10=T;
857       T= -(C11*ER3+S11*EI3); S11=S11*ER3-C11*EI3; C11=T;
858       T= -S12; S12= -C12; C12=T;
859       T= -S13*ER1+C13*EI1; S13= -(C13*ER1+S13*EI1); C13=T;
860       T=(C14-S14)*E2; S14= -(C14+S14)*E2; C14=T;
861       T= -S15*ER3+C15*EI3; S15= -(C15*ER3+S15*EI3); C15=T;
862    L200:
863       REPORT
864       for (K=K0; K<N; K+=M16)
865       {
866          RS0=X0[K]+X8[K]; IS0=Y0[K]+Y8[K];
867          RU0=X0[K]-X8[K]; IU0=Y0[K]-Y8[K];
868          RS1=X1[K]+X9[K]; IS1=Y1[K]+Y9[K];
869          RU1=X1[K]-X9[K]; IU1=Y1[K]-Y9[K];
870          RS2=X2[K]+X10[K]; IS2=Y2[K]+Y10[K];
871          RU2=X2[K]-X10[K]; IU2=Y2[K]-Y10[K];
872          RS3=X3[K]+X11[K]; IS3=Y3[K]+Y11[K];
873          RU3=X3[K]-X11[K]; IU3=Y3[K]-Y11[K];
874          RS4=X4[K]+X12[K]; IS4=Y4[K]+Y12[K];
875          RU4=X4[K]-X12[K]; IU4=Y4[K]-Y12[K];
876          RS5=X5[K]+X13[K]; IS5=Y5[K]+Y13[K];
877          RU5=X5[K]-X13[K]; IU5=Y5[K]-Y13[K];
878          RS6=X6[K]+X14[K]; IS6=Y6[K]+Y14[K];
879          RU6=X6[K]-X14[K]; IU6=Y6[K]-Y14[K];
880          RS7=X7[K]+X15[K]; IS7=Y7[K]+Y15[K];
881          RU7=X7[K]-X15[K]; IU7=Y7[K]-Y15[K];
882          RSS0=RS0+RS4; ISS0=IS0+IS4;
883          RSS1=RS1+RS5; ISS1=IS1+IS5;
884          RSS2=RS2+RS6; ISS2=IS2+IS6;
885          RSS3=RS3+RS7; ISS3=IS3+IS7;
886          RSU0=RS0-RS4; ISU0=IS0-IS4;
887          RSU1=RS1-RS5; ISU1=IS1-IS5;
888          RSU2=RS2-RS6; ISU2=IS2-IS6;
889          RSU3=RS3-RS7; ISU3=IS3-IS7;
890          RUS0=RU0-IU4; IUS0=IU0+RU4;
891          RUS1=RU1-IU5; IUS1=IU1+RU5;
892          RUS2=RU2-IU6; IUS2=IU2+RU6;
893          RUS3=RU3-IU7; IUS3=IU3+RU7;
894          RUU0=RU0+IU4; IUU0=IU0-RU4;
895          RUU1=RU1+IU5; IUU1=IU1-RU5;
896          RUU2=RU2+IU6; IUU2=IU2-RU6;
897          RUU3=RU3+IU7; IUU3=IU3-RU7;
898          T=(RSU1+ISU1)*E2; ISU1=(ISU1-RSU1)*E2; RSU1=T;
899          T=(RSU3+ISU3)*E2; ISU3=(ISU3-RSU3)*E2; RSU3=T;
900          T=RUS1*ER3+IUS1*EI3; IUS1=IUS1*ER3-RUS1*EI3; RUS1=T;
901          T=(RUS2+IUS2)*E2; IUS2=(IUS2-RUS2)*E2; RUS2=T;
902          T=RUS3*ER5+IUS3*EI5; IUS3=IUS3*ER5-RUS3*EI5; RUS3=T;
903          T=RUU1*ER1+IUU1*EI1; IUU1=IUU1*ER1-RUU1*EI1; RUU1=T;
904          T=(RUU2+IUU2)*E2; IUU2=(IUU2-RUU2)*E2; RUU2=T;
905          T=RUU3*ER3+IUU3*EI3; IUU3=IUU3*ER3-RUU3*EI3; RUU3=T;
906          RSSS0=RSS0+RSS2; ISSS0=ISS0+ISS2;
907          RSSS1=RSS1+RSS3; ISSS1=ISS1+ISS3;
908          RSSU0=RSS0-RSS2; ISSU0=ISS0-ISS2;
909          RSSU1=RSS1-RSS3; ISSU1=ISS1-ISS3;
910          RSUS0=RSU0-ISU2; ISUS0=ISU0+RSU2;
911          RSUS1=RSU1-ISU3; ISUS1=ISU1+RSU3;
912          RSUU0=RSU0+ISU2; ISUU0=ISU0-RSU2;
913          RSUU1=RSU1+ISU3; ISUU1=ISU1-RSU3;
914          RUSS0=RUS0-IUS2; IUSS0=IUS0+RUS2;
915          RUSS1=RUS1-IUS3; IUSS1=IUS1+RUS3;
916          RUSU0=RUS0+IUS2; IUSU0=IUS0-RUS2;
917          RUSU1=RUS1+IUS3; IUSU1=IUS1-RUS3;
918          RUUS0=RUU0+RUU2; IUUS0=IUU0+IUU2;
919          RUUS1=RUU1+RUU3; IUUS1=IUU1+IUU3;
920          RUUU0=RUU0-RUU2; IUUU0=IUU0-IUU2;
921          RUUU1=RUU1-RUU3; IUUU1=IUU1-IUU3;
922          X0[K]=RSSS0+RSSS1; Y0[K]=ISSS0+ISSS1;
923          if (!ZERO)
924          {
925             REPORT
926             R1=RUUS0+RUUS1; I1=IUUS0+IUUS1;
927             R2=RSUU0+RSUU1; I2=ISUU0+ISUU1;
928             R3=RUSU0+RUSU1; I3=IUSU0+IUSU1;
929             R4=RSSU0+ISSU1; I4=ISSU0-RSSU1;
930             R5=RUUU0+IUUU1; I5=IUUU0-RUUU1;
931             R6=RSUS0+ISUS1; I6=ISUS0-RSUS1;
932             R7=RUSS0+IUSS1; I7=IUSS0-RUSS1;
933             R8=RSSS0-RSSS1; I8=ISSS0-ISSS1;
934             R9=RUUS0-RUUS1; I9=IUUS0-IUUS1;
935             R10=RSUU0-RSUU1; I10=ISUU0-ISUU1;
936             R11=RUSU0-RUSU1; I11=IUSU0-IUSU1;
937             R12=RSSU0-ISSU1; I12=ISSU0+RSSU1;
938             R13=RUUU0-IUUU1; I13=IUUU0+RUUU1;
939             R14=RSUS0-ISUS1; I14=ISUS0+RSUS1;
940             R15=RUSS0-IUSS1; I15=IUSS0+RUSS1;
941             X8[K]=R1*C1+I1*S1; Y8[K]=I1*C1-R1*S1;
942             X4[K]=R2*C2+I2*S2; Y4[K]=I2*C2-R2*S2;
943             X12[K]=R3*C3+I3*S3; Y12[K]=I3*C3-R3*S3;
944             X2[K]=R4*C4+I4*S4; Y2[K]=I4*C4-R4*S4;
945             X10[K]=R5*C5+I5*S5; Y10[K]=I5*C5-R5*S5;
946             X6[K]=R6*C6+I6*S6; Y6[K]=I6*C6-R6*S6;
947             X14[K]=R7*C7+I7*S7; Y14[K]=I7*C7-R7*S7;
948             X1[K]=R8*C8+I8*S8; Y1[K]=I8*C8-R8*S8;
949             X9[K]=R9*C9+I9*S9; Y9[K]=I9*C9-R9*S9;
950             X5[K]=R10*C10+I10*S10; Y5[K]=I10*C10-R10*S10;
951             X13[K]=R11*C11+I11*S11; Y13[K]=I11*C11-R11*S11;
952             X3[K]=R12*C12+I12*S12; Y3[K]=I12*C12-R12*S12;
953             X11[K]=R13*C13+I13*S13; Y11[K]=I13*C13-R13*S13;
954             X7[K]=R14*C14+I14*S14; Y7[K]=I14*C14-R14*S14;
955             X15[K]=R15*C15+I15*S15; Y15[K]=I15*C15-R15*S15;
956          }
957          else
958          {
959             REPORT
960             X8[K]=RUUS0+RUUS1; Y8[K]=IUUS0+IUUS1;
961             X4[K]=RSUU0+RSUU1; Y4[K]=ISUU0+ISUU1;
962             X12[K]=RUSU0+RUSU1; Y12[K]=IUSU0+IUSU1;
963             X2[K]=RSSU0+ISSU1; Y2[K]=ISSU0-RSSU1;
964             X10[K]=RUUU0+IUUU1; Y10[K]=IUUU0-RUUU1;
965             X6[K]=RSUS0+ISUS1; Y6[K]=ISUS0-RSUS1;
966             X14[K]=RUSS0+IUSS1; Y14[K]=IUSS0-RUSS1;
967             X1[K]=RSSS0-RSSS1; Y1[K]=ISSS0-ISSS1;
968             X9[K]=RUUS0-RUUS1; Y9[K]=IUUS0-IUUS1;
969             X5[K]=RSUU0-RSUU1; Y5[K]=ISUU0-ISUU1;
970             X13[K]=RUSU0-RUSU1; Y13[K]=IUSU0-IUSU1;
971             X3[K]=RSSU0-ISSU1; Y3[K]=ISSU0+RSSU1;
972             X11[K]=RUUU0-IUUU1; Y11[K]=IUUU0+RUUU1;
973             X7[K]=RSUS0-ISUS1; Y7[K]=ISUS0+RSUS1;
974             X15[K]=RUSS0-IUSS1; Y15[K]=IUSS0+RUSS1;
975          }
976       }
977       goto L100;
978    L600: ;
979    }
980 
981    return;
982 }
983 
984 // can the number of points be factorised sufficiently
985 // for the fft to run
986 
CanFactor(int PTS)987 bool FFT_Controller::CanFactor(int PTS)
988 {
989    REPORT
990    const int NP = 16, NQ = 10, PMAX=19;
991 
992    if (PTS<=1) { REPORT return true; }
993 
994    int N = PTS, F = 2, P = 0, Q = 0;
995 
996    while (N > 1)
997    {
998       bool fail = true;
999       for (int J = F; J <= PMAX; J++)
1000          if (N % J == 0) { fail = false; F=J; break; }
1001       if (fail || P >= NP || Q >= NQ) { REPORT return false; }
1002       N /= F;
1003       if (N % F != 0) Q++; else { N /= F; P++; }
1004    }
1005 
1006    return true;    // can factorise
1007 
1008 }
1009 
1010 bool FFT_Controller::OnlyOldFFT;         // static variable
1011 
1012 // **************************** multi radix counter **********************
1013 
MultiRadixCounter(int nx,const SimpleIntArray & rx,SimpleIntArray & vx)1014 MultiRadixCounter::MultiRadixCounter(int nx, const SimpleIntArray& rx,
1015    SimpleIntArray& vx)
1016    : Radix(rx), Value(vx), n(nx), reverse(0),
1017       product(1), counter(0), finish(false)
1018 {
1019    REPORT for (int k = 0; k < n; k++) { Value[k] = 0; product *= Radix[k]; }
1020 }
1021 
1022 void MultiRadixCounter::operator++()
1023 {
1024    REPORT
1025    counter++; int p = product;
1026    for (int k = 0; k < n; k++)
1027    {
1028       Value[k]++; int p1 = p / Radix[k]; reverse += p1;
1029       if (Value[k] == Radix[k]) { REPORT Value[k] = 0; reverse -= p; p = p1; }
1030       else { REPORT return; }
1031    }
1032    finish = true;
1033 }
1034 
1035 
BitReverse(int x,int prod,int n,const SimpleIntArray & f)1036 static int BitReverse(int x, int prod, int n, const SimpleIntArray& f)
1037 {
1038    // x = c[0]+f[0]*(c[1]+f[1]*(c[2]+...
1039    // return c[n-1]+f[n-1]*(c[n-2]+f[n-2]*(c[n-3]+...
1040    // prod is the product of the f[i]
1041    // n is the number of f[i] (don't assume f has the correct length)
1042 
1043    REPORT
1044    const int* d = f.Data() + n; int sum = 0; int q = 1;
1045    while (n--)
1046    {
1047       prod /= *(--d);
1048       int c = x / prod; x-= c * prod;
1049       sum += q * c; q *= *d;
1050    }
1051    return sum;
1052 }
1053 
1054 
1055 #ifdef use_namespace
1056 }
1057 #endif
1058 
1059 
1060