1  ***   Warning: new stack size = 32000000 (30.518 Mbytes).
2[688, 201]
3371
41:-0.33333333333333333333333333333333333333
52:0
63:19.233333333333333333333333333333333333
74:0
85:-52083.825396825396825396825396825396826
96:0
107:1357464617.6166666666666666666666666667
118:0
129:-179843066266647.30303030303030303030303
1310:0
141:0.33063066328223158676532076242927218282
152:0.65737655586117037348678949547515310666
163:0.83891994700224752688923802043332022788
174:0.92491465281539828015714800144878813258
185:0.96452286982609889100272493876597162334
196:0.98297145977262401505413785166918148202
207:0.99172249343786354566494479026158994548
218:0.99593957135944435652980046461493771761
229:0.99799568488420794431041938185291613541
2310:0.99900642043725868624437550798777108358
24[441, 365]
250.65054897266021897189117007748600082035 + 0.3797872612825021141546006883142
264264193*I
271.0197948617829165568371172783583479161 + 0.01753787982678033377468853770967
280993444*x - 0.30423568247445724453438996641387297306*x^2 + O(x^3)
29-1.0000000000000000000000000000000000000*x^-2 + 0.07281584548367672486058637
305874901319146 + O(x)
312.0000000000000000000000000000000000000*x^-3 + O(x^0)
32-0.93754825431584375370257409456786497789 + 1.989280234298901023420858687421
335163815*x^2 - 3.0000729014215224328219706087689241919*x^4 + O(x^6)
341.9892802342989010234208586874215163815 - 6.00014580284304486564394121753784
3583837*x^2 + 12.000743196868230785490141705105642696*x^4 + O(x^6)
36-2.15800131645680564826065544584339217*x - 2.1019724905481294182200201711445
378153*x^2 - 0.529685033171161239709892386112460416*x^3 - 4.738573771869464928
3837424643722475375*x^4 - 3.21952194221326633226406870366478753*x^5 + O(x^6)
39-2.15800131645680564826065544584339217 - 4.203944981096258836440040342289163
4006*x - 1.58905509951348371912967715833738125*x^2 - 18.9542950874778597134969
41857488990150*x^3 - 16.0976097110663316613203435183239376*x^4 - 21.4034953961
42473607584436264229933443*x^5 + O(x^6)
431.1179816853477385178979715038469170225
44[1, [0, 1], 1, 5]
451.0000000000000000000000000000000000000*x^-2 + 1.154431329803065721213024180
461648048621*x^-1 + O(x^0)
470.61685027506808491367715568749225944596*x^-2 + 1.01511996319472488016374193
4863106928091*x^-1 + O(x^0)
491.0000000000000000000000000000000000000*x^-1 + O(x^0)
500.72399875382322394120054853672842760345*x^-1 + O(x^0)
51246.96037648704266640450758953126840719
52246.96037648704266640450758953126840719
531.00000000000000000000000000000000000000000000000000000*x^-1 + O(x^0)
544.59057737496905265921181053582421504989219703475223909 - 3.1894012475791441
553416113592649224080101489871517943905*I
564.59057737496905265921181053582421504989219703475223909 - 3.1894012475791441
573416113592649224080101489871517943905*I
58-0.918938533204672741780329736405617639861397473637783413
59-0.500000000000000000000000000000000000000000000000000000 - 0.91893853320467
602741780329736405617639861397473637783413*x - 1.00317822795429242560505001336
61498021909949745508045994*x^2 - 1.0007851944770424079601768022277292142436346
621138266336*x^3 - 0.999879299500571164957800813655875235912130830621737643*x^
634 - 1.00000194089632045603779988198163183123243380977058752*x^5 - 1.00000130
64114601395962431150487297972022050535126287236*x^6 - 0.9999998313841736107799
6530217058015406504287266515799803*x^7 - 1.00000000576467597994939441606374165
66964458982012538704*x^8 - 1.0000000009110164892314165709218674221759786407713
677178*x^9 - 0.999999999850299240580988626479279942923194971996409274*x^10 - 1
68.00000000000940689566566617690964783960902526136635510*x^11 - 1.000000000000
6904092582630415831547636589331713210684094*x^12 - 0.9999999999999346009519410
7089847743543530991534013594552*x^13 - 1.0000000000000065439687498919193731717
718549879786061140*x^14 - 0.99999999999999969875751286332132050502895615410010
723971*x^15 + O(x^16)
73[14.1347251417346937904572519835624702707842571156992432]
74[14.1347251417346937904572519835624702707842571156992432]
75[14.1347251417346937904572519835624702707842571156992432, 21.022039638771554
769926284795938969027773343405249027818, 25.0108575801456887632137909925628218
77186595496725579967]
78[-14.1347251417346937904572519835624702707842571156992432, 14.13472514173469
7937904572519835624702707842571156992432]
801.64493406684822643647241516664602518921894990120679844
810.E-57
820.E-57 + 0.E-57*I
831.08642943411465667904756436036751417209703758075237284 + 0.5814393878814690
8450796952624011344061904995756625692378*I
85[0, 0, 0, 2.05247285847993976968922276314372344628278531045671612, 3.2624435
865597875746635580364385504003255536470999182746, 4.47055151331009795091782387
87950075730310480986858048883, 4.754431515963405864151635593968863195363908404
8879441418, 6.01192275298639519014642522248844223795049139992228727, 6.6225046
891340770678139848771792480632419572890704427238, 7.34281497953964814691434021
90056204069773310740821664643, 7.706794648113253444646515057103424471764811099
9199985019, 8.47680194262350037741231085806780599121287634323800435, 9.3821789
921117193954907921307162820430752270478042951828, 10.2034632426606570779547130
93495062951265229955572895373, 10.49585360108396305215840613479582203063682050
9406846644, 11.0334412351426994365984023609574093781284435634924994, 11.686948
950908853117520467071200624951073279924875106987, 12.2872289038249291759599430
96438941349597652754843369265, 12.97272258207285515566187612538460946756424085
9717308260, 13.1516366031527298638457029894321422485191693385770427, 14.941560
983295484662604761276988412262910822900346167548, 15.5153470765360805167423831
99611671659141843411546141532, 15.89479293723708546650440371159237688468390847
10047857619, 16.4404849010636539204980820326139388267735297782205584, 16.643129
1014008115360154817747496027260477191373350164541, 17.4115213614943714989213104
102465137362699445863767902588, 18.07306090799612896897975201392338100448825380
10323845260, 18.5597395171897437816282533768115505690861265963563642, 19.031282
1049499859520841448378360117311970316861384451388, 19.4973491720207997554477267
105895497007883582413152228914, 19.97454966422489875085184165206182695782541275
10669183433]
107[0, 0, 0, 2.05247285847993976968922276314372344628278531045671612]
108[-2.05247285847993976968922276314372344628278531045671612]
109[2.05247285847993976968922276314372344628278531045671612]
110[-2.05247285847993976968922276314372344628278531045671612, 0, 0, 0, 2.052472
11185847993976968922276314372344628278531045671612]
112[[1, 25/48, 5/12, 25/48, 1], [1620/691, 1, 9/14, 9/14, 1, 1620/691], 0.00741
113542092989613058900642774590022872478364665364735552, 0.005083512108393286860
11449429013743874732263404552491812001]
115[[1, 10/21, 5/18, 5/24, 5/24, 5/18, 10/21, 1], 1.130264319203497485238782258
11642414006077270696235995422]
1172.99829512187626747049837118353413149411569186966170254 - 0.0193445925339772
118841452384712897772364256641021849529530*I
1192.99829512187626747049837118353413149411569186966170254 - 0.0193445925339772
120841452384712897772364256641021849529530*I
1212.99829512187626747049837118353413149411569186966170254 - 0.0193445925339772
122841452384712897772364256641021849529530*I
123973
1240.177455993247329238699202652214156646711252940222106816
125[0.201954787411261026528684690029341772176043691915844168, 0]
1260.97906557276284488612288786018111182197046845456987142630213045542848319630
12707533965134607035430513178949168014263879
128-189
129-189
130-190
131-191
1321.97848884347766873530779261857994032392637450942515837 + 0.0609239674747025
133097814469640574145327771779577841455860*I
1341.30351764627548230978276542627689204122406359796082825 - 0.0344294367015510
135576149187463564582588308663091234952457*I
136  *** lfunzeros: Warning: lfuninit: insufficient initialization.
137[1.76524528537434114004961734014687322242921043467451418, 2.9001948143989959
1383853720458684428845871417117642020713, 4.80912824766302432457595530706768541
139000593962088321171, 6.05385187632329316110398877826905838861120455439163616,
140 7.03104718941202758893296505461247399284219178321418886, 8.0611446646958964
1415370426023193369987671312157987402508, 10.4138094136894319447888631663520554
142801158568510225716, 11.5429326942529531377771432204175144625871573059960913,
143 12.2634871694527156193695773489858842238381199251462399, 13.523913779157256
1448249199285782562251878941627912318795, 14.6267210920659865269412411659252020
145114704423226886093, 15.2588679023455946128303693291132825994525235298638847,
146 17.1471665979791684669746630513532371198945899053737963, 17.924261776515709
1473404867459600570383531919623979762348, 19.2057886412953906115542482837931510
148878888441286200350]
149-189
1501.97848884347766873530779261857994032392637450942515837 + 0.0609239674747025
151097814469640574145327771779577841455860*I
152-191
153x^3 - x - 1
154Curve y^2+(x^3+x^2+1)*y = x^2+x
155-58
156Curve y^2+(x^3+1)*y = x^2+x
157Curve y^2+(x^2+x)*y = x^6+3*x^5+6*x^4+7*x^3+6*x^2+3*x+1
158  *** lfungenus2: Warning: unknown valuation of conductor at 2.
159-58
160Curve y^2=x^5 + x
161-129
162[0, 0, -1]
1632.1541265970381460760215439978358922308
164Curve y^2=x^5 + 1
165-132
166[0, 0, 1]
1671.0314071041733177562983179141216861078
168  *** lfungenus2: Warning: unknown valuation of conductor at 2.
169[[Vecsmall([15]), [3*x^5 + 60*x^4 + 480*x^3 + 1920*x^2 + 3840*x + 3075, [[2,
170 1], [3, 1], [5, 1]]]], 0, [0, 0, 1, 1], 2, 50625, 0]
171Elliptic curves over number fields
172-131
1731.3894051168795718563026565631765059398
174-127
1751.7561367497808959311966399691482152395
176-128
1772.7749792286446646504296418681816946545
178-124
1794.4552267729872870508917049939747968543
180-131
1818.2306621809152393859013012963081422203
182-2
183-22
184Grossencharacter
185-128
1861.0000000000000000000000000000000000000
187tensor product
188   realbitprecision = 64 significant bits (19 decimal digits displayed)
189-65
1901.774264741132682166
191check all formats
192-189
193-189
194-189
195-189
196[1, -2, -3, 2, -2, 6, -1, 0, 6, 4]
197[1, -1, 1, 1, -1, -1, -1, -1, 1, 1]
198[1, -1, 0, 1, 1, 0, 0, -1, 0, -1]
199-191
2001/240
201-1/504
2021/480
203-1/264
204691/65520
205-1/24
2063617/16320
207-43867/28728
2081.00000000000000000000000000000000000000000000000000000
209-1.07637023438345995368832251445133621778701931610742695
2100.661475187921069742727520633979626889791045796292710056
2110.146374542091265989413000913274996215907067384190621201
2120.934830053608610054115427799558087197935200286533499400
2130.661475187921069742727520633979626889791045796292710056
214-190
215-188
216-57
2170
2180.953260474794660686250509013566383496014986229687151072 + 16.29021572039039
21907929631726451921643054665845864660536*I
2200
2211.00000000000000000000000000000000000000000000000000000
222-183
2231.00000000000000000000000000000000000000000000000000000
224-177
225zeta(s-a)
226-188
2271.00000000000000000000000000000000000000000000000000000*x^-1 + O(x^0)
2281.64493406684822643647241516664602518921894990120679844
229-189
230-0.500000000000000000000000000000000000000000000000000000
2311.00000000000000000000000000000000000000000000000000000*x^-1 + O(x^0)
232zeta(s)*zeta(s-a)
233-185
2341.64493406684822643647241516664602518921894990120679844*x^-1 + O(x^0)
2351.97730435029729611819708544148512557208215146666013421
236-186
237-0.822467033424113218236207583323012594609474950603399219
2381.20205690315959428539973816151144999076498629234049888*x^-1 + O(x^0)
239  *** lfunconductor: Warning: #an = 598 < 1444, results may be imprecise.
24061
2411.01542133944024439298806668944681826497337332941038810
242[[147, 202], [147, 202], [147, 202]]
243-188
244[[11, 195], [6, 195]]
2451
2461
2474
248857
249120
250[8, 2108]
251[]
252[[[1, 0.54657288114990636157071248041210027618*x^-1 + O(x^0)]], [[1, 6.64934
25360830715850476062965515423576672*x^-1 + O(x^0)], [0, -6.64934608307158504760
25462965515423576672*x^-1 + O(x^0)]]~, 1]
2551
2565077
257725.0000000000000000
258[725, -52]
25924217.00000000000000
26028614069.00000000000
261-64
262-57
263[1, 0, 1, 0, 1, 0, 2, 0, -2, 0]
264[1, 1 + 1.732050807568877294*I, 1/2 - 0.8660254037844386468*I, -1 + 1.732050
265807568877294*I, -1/2 - 0.8660254037844386468*I, 2, 0, 0, 1 + 1.7320508075688
26677294*I, 1 - 1.732050807568877294*I]
267[1, -1 - 1.732050807568877294*I, 0.5000000000000000001 + 0.86602540378443864
26868*I, -1.000000000000000000 + 1.732050807568877294*I, -1, 1.0000000000000000
26900 - 1.732050807568877294*I, -1 + 1.732050807568877294*I, 0, 0.9999999999999
270999999 - 1.732050807568877294*I, 1 + 1.732050807568877294*I]
2711
272[6, 186]
273[[12, 125], [11, 125], [5, 124]]
2741.000000000000000000
2750.83214280825734611779852282418300471522 + 0.0378612661512960987252330268197
27696281464*I
2770.83214280825734611779852282418300471522 + 0.0378612661512960987252330268197
27896281464*I
279-125
280[1, -127]
2811.6449340668482264364724151666460251892
2821:-54
2832:-35
2843:-43
2854:-31
2865:-38
2876:-25
2887:-22
2890
290  *** lfun: Warning: #an = 1 < 5, results may be imprecise.
2911.6449321944727952165464885195862083681
2920.97075234252284168437606085418663108405 + 0.0794201340278726639136259197680
29322884149*I
294-125
295-123
296-122
297-126
298-124
299-125
300O(x)
301O(x^2)
302O(x^2)
303[0.90384905518988545678200390170972794465 - 2.372435185361247117269703583348
3045504030*I, 2.1076105368263265781937945304702732642 + 2.778690871419041003781
3056785866162988408*I]
3061.3957117832136846124125242709765990227 + 0.19841375090717971815217149623689
307183815*I
308[1.3957117832136846124125242709765990227 + 0.1984137509071797181521714962368
3099183815*I]
310  ***   at top-level: lfuntheta(1,0)
311  ***                 ^--------------
312  *** lfuntheta: domain error in lfunthetainit: t = 0
313  ***   at top-level: lfunhardy(1,I)
314  ***                 ^--------------
315  *** lfunhardy: incorrect type in lfunhardy (t_COMPLEX).
316  ***   at top-level: lfun(1,2,-1)
317  ***                 ^------------
318  *** lfun: domain error in lfun: D <= 0
319  ***   at top-level: lfunan(lfuncreate([1,0,[0],1,1,1,1]),10)
320  ***                 ^----------------------------------------
321  *** lfunan: incorrect type in vecan_closure (t_INT).
322  ***   at top-level: ...t(x^2+1);G=galoisinit(N);lfunartin(N,G,[1]~,2)
323  ***                                             ^---------------------
324  *** lfunartin: inconsistent dimensions in lfunartin.
325  ***   at top-level: ...t(x^2+1);G=galoisinit(N);lfunartin(N,G,[1,1,1]
326  ***                                             ^---------------------
327  *** lfunartin: inconsistent dimensions in lfunartin.
328  ***   at top-level: localbitprec(16);lfun(Lt,12)
329  ***                                  ^-----------
330  *** lfun: incorrect type in vecan_closure (t_INT).
331  ***   at top-level: lfun(L,1)
332  ***                 ^---------
333  *** lfun: incorrect type in direuler [bad primes] (t_VEC).
334  ***   at top-level: lfunzeros(1,[3,1])
335  ***                 ^------------------
336  *** lfunzeros: incorrect type in lfunzeros (t_VEC).
337  ***   at top-level: lfuncreate([errbnr,[[1],[2]]])
338  ***                 ^------------------------------
339  *** lfuncreate: incorrect type in lfuncreate [different conductors] (t_VEC).
340  ***   at top-level: lfuncreate([errG,[[1],[2]]])
341  ***                 ^----------------------------
342  *** lfuncreate: incorrect type in lfunchiZ (t_VEC).
343  ***   at top-level: lfuncreate([errG,[[1,8]~,[1,7]~]])
344  ***                 ^----------------------------------
345  *** lfuncreate: incorrect type in lfuncreate [different conductors] (t_VEC).
346  ***   at top-level: lfuncreate([errG,[[1,8]~,[0,1]~]])
347  ***                 ^----------------------------------
348  *** lfuncreate: incorrect type in lfuncreate [different conductors] (t_VEC).
349  ***   at top-level: lfunorderzero([errG,[[1,8]~,[1,2]~]])
350  ***                 ^-------------------------------------
351  *** lfunorderzero: incorrect type in lfunorderzero [vector-valued] (t_VEC).
352  ***   at top-level: ...z)->1,1],0,[0],1,1,1,1]);lfunan(L,5)
353  ***                                             ^-----------
354  *** lfunan: incorrect type in vecan_closure (t_VEC).
355  ***   at top-level: ...->1,[1]],0,[0],1,1,1,1]);lfunan(L,5)
356  ***                                             ^-----------
357  *** lfunan: incorrect type in vecan_closure [wrong arity] (t_CLOSURE).
358  ***   at top-level: ...->1,[1]],0,[0],1,1,1,1]);lfunan(L,5)
359  ***                                             ^-----------
360  *** lfunan: incorrect type in vecan_closure (t_INT).
361  ***   at top-level: ...1,[2,3]],0,[0],1,1,1,1]);lfunan(L,5)
362  ***                                             ^-----------
363  *** lfunan: incorrect type in direuler [bad primes] (t_INT).
364  ***   at top-level: ...[[2,3]]],0,[0],1,1,1,1]);lfunan(L,5)
365  ***                                             ^-----------
366  *** lfunan: domain error in direuler: constant term != 1
367  ***   at top-level: ...["",3]]],0,[0],1,1,1,1]);lfunan(L,5)
368  ***                                             ^-----------
369  *** lfunan: incorrect type in gtou [integer >=0 expected] (t_STR).
370  ***   at top-level: ...[2,""]]],0,[0],1,1,1,1]);lfunan(L,5)
371  ***                                             ^-----------
372  *** lfunan: incorrect type in direuler (t_STR).
373  ***   at top-level: lfun([[],[""]],1)
374  ***                 ^-----------------
375  *** lfun: incorrect type in lfunmisc_to_ldata (t_VEC).
376Total time spent: 5059
377