1 *** Warning: new stack size = 32000000 (30.518 Mbytes). 2[688, 201] 3371 41:-0.33333333333333333333333333333333333333 52:0 63:19.233333333333333333333333333333333333 74:0 85:-52083.825396825396825396825396825396826 96:0 107:1357464617.6166666666666666666666666667 118:0 129:-179843066266647.30303030303030303030303 1310:0 141:0.33063066328223158676532076242927218282 152:0.65737655586117037348678949547515310666 163:0.83891994700224752688923802043332022788 174:0.92491465281539828015714800144878813258 185:0.96452286982609889100272493876597162334 196:0.98297145977262401505413785166918148202 207:0.99172249343786354566494479026158994548 218:0.99593957135944435652980046461493771761 229:0.99799568488420794431041938185291613541 2310:0.99900642043725868624437550798777108358 24[441, 365] 250.65054897266021897189117007748600082035 + 0.3797872612825021141546006883142 264264193*I 271.0197948617829165568371172783583479161 + 0.01753787982678033377468853770967 280993444*x - 0.30423568247445724453438996641387297306*x^2 + O(x^3) 29-1.0000000000000000000000000000000000000*x^-2 + 0.07281584548367672486058637 305874901319146 + O(x) 312.0000000000000000000000000000000000000*x^-3 + O(x^0) 32-0.93754825431584375370257409456786497789 + 1.989280234298901023420858687421 335163815*x^2 - 3.0000729014215224328219706087689241919*x^4 + O(x^6) 341.9892802342989010234208586874215163815 - 6.00014580284304486564394121753784 3583837*x^2 + 12.000743196868230785490141705105642696*x^4 + O(x^6) 36-2.15800131645680564826065544584339217*x - 2.1019724905481294182200201711445 378153*x^2 - 0.529685033171161239709892386112460416*x^3 - 4.738573771869464928 3837424643722475375*x^4 - 3.21952194221326633226406870366478753*x^5 + O(x^6) 39-2.15800131645680564826065544584339217 - 4.203944981096258836440040342289163 4006*x - 1.58905509951348371912967715833738125*x^2 - 18.9542950874778597134969 41857488990150*x^3 - 16.0976097110663316613203435183239376*x^4 - 21.4034953961 42473607584436264229933443*x^5 + O(x^6) 431.1179816853477385178979715038469170225 44[1, [0, 1], 1, 5] 451.0000000000000000000000000000000000000*x^-2 + 1.154431329803065721213024180 461648048621*x^-1 + O(x^0) 470.61685027506808491367715568749225944596*x^-2 + 1.01511996319472488016374193 4863106928091*x^-1 + O(x^0) 491.0000000000000000000000000000000000000*x^-1 + O(x^0) 500.72399875382322394120054853672842760345*x^-1 + O(x^0) 51246.96037648704266640450758953126840719 52246.96037648704266640450758953126840719 531.00000000000000000000000000000000000000000000000000000*x^-1 + O(x^0) 544.59057737496905265921181053582421504989219703475223909 - 3.1894012475791441 553416113592649224080101489871517943905*I 564.59057737496905265921181053582421504989219703475223909 - 3.1894012475791441 573416113592649224080101489871517943905*I 58-0.918938533204672741780329736405617639861397473637783413 59-0.500000000000000000000000000000000000000000000000000000 - 0.91893853320467 602741780329736405617639861397473637783413*x - 1.00317822795429242560505001336 61498021909949745508045994*x^2 - 1.0007851944770424079601768022277292142436346 621138266336*x^3 - 0.999879299500571164957800813655875235912130830621737643*x^ 634 - 1.00000194089632045603779988198163183123243380977058752*x^5 - 1.00000130 64114601395962431150487297972022050535126287236*x^6 - 0.9999998313841736107799 6530217058015406504287266515799803*x^7 - 1.00000000576467597994939441606374165 66964458982012538704*x^8 - 1.0000000009110164892314165709218674221759786407713 677178*x^9 - 0.999999999850299240580988626479279942923194971996409274*x^10 - 1 68.00000000000940689566566617690964783960902526136635510*x^11 - 1.000000000000 6904092582630415831547636589331713210684094*x^12 - 0.9999999999999346009519410 7089847743543530991534013594552*x^13 - 1.0000000000000065439687498919193731717 718549879786061140*x^14 - 0.99999999999999969875751286332132050502895615410010 723971*x^15 + O(x^16) 73[14.1347251417346937904572519835624702707842571156992432] 74[14.1347251417346937904572519835624702707842571156992432] 75[14.1347251417346937904572519835624702707842571156992432, 21.022039638771554 769926284795938969027773343405249027818, 25.0108575801456887632137909925628218 77186595496725579967] 78[-14.1347251417346937904572519835624702707842571156992432, 14.13472514173469 7937904572519835624702707842571156992432] 801.64493406684822643647241516664602518921894990120679844 810.E-57 820.E-57 + 0.E-57*I 831.08642943411465667904756436036751417209703758075237284 + 0.5814393878814690 8450796952624011344061904995756625692378*I 85[0, 0, 0, 2.05247285847993976968922276314372344628278531045671612, 3.2624435 865597875746635580364385504003255536470999182746, 4.47055151331009795091782387 87950075730310480986858048883, 4.754431515963405864151635593968863195363908404 8879441418, 6.01192275298639519014642522248844223795049139992228727, 6.6225046 891340770678139848771792480632419572890704427238, 7.34281497953964814691434021 90056204069773310740821664643, 7.706794648113253444646515057103424471764811099 9199985019, 8.47680194262350037741231085806780599121287634323800435, 9.3821789 921117193954907921307162820430752270478042951828, 10.2034632426606570779547130 93495062951265229955572895373, 10.49585360108396305215840613479582203063682050 9406846644, 11.0334412351426994365984023609574093781284435634924994, 11.686948 950908853117520467071200624951073279924875106987, 12.2872289038249291759599430 96438941349597652754843369265, 12.97272258207285515566187612538460946756424085 9717308260, 13.1516366031527298638457029894321422485191693385770427, 14.941560 983295484662604761276988412262910822900346167548, 15.5153470765360805167423831 99611671659141843411546141532, 15.89479293723708546650440371159237688468390847 10047857619, 16.4404849010636539204980820326139388267735297782205584, 16.643129 1014008115360154817747496027260477191373350164541, 17.4115213614943714989213104 102465137362699445863767902588, 18.07306090799612896897975201392338100448825380 10323845260, 18.5597395171897437816282533768115505690861265963563642, 19.031282 1049499859520841448378360117311970316861384451388, 19.4973491720207997554477267 105895497007883582413152228914, 19.97454966422489875085184165206182695782541275 10669183433] 107[0, 0, 0, 2.05247285847993976968922276314372344628278531045671612] 108[-2.05247285847993976968922276314372344628278531045671612] 109[2.05247285847993976968922276314372344628278531045671612] 110[-2.05247285847993976968922276314372344628278531045671612, 0, 0, 0, 2.052472 11185847993976968922276314372344628278531045671612] 112[[1, 25/48, 5/12, 25/48, 1], [1620/691, 1, 9/14, 9/14, 1, 1620/691], 0.00741 113542092989613058900642774590022872478364665364735552, 0.005083512108393286860 11449429013743874732263404552491812001] 115[[1, 10/21, 5/18, 5/24, 5/24, 5/18, 10/21, 1], 1.130264319203497485238782258 11642414006077270696235995422] 1172.99829512187626747049837118353413149411569186966170254 - 0.0193445925339772 118841452384712897772364256641021849529530*I 1192.99829512187626747049837118353413149411569186966170254 - 0.0193445925339772 120841452384712897772364256641021849529530*I 1212.99829512187626747049837118353413149411569186966170254 - 0.0193445925339772 122841452384712897772364256641021849529530*I 123973 1240.177455993247329238699202652214156646711252940222106816 125[0.201954787411261026528684690029341772176043691915844168, 0] 1260.97906557276284488612288786018111182197046845456987142630213045542848319630 12707533965134607035430513178949168014263879 128-189 129-189 130-190 131-191 1321.97848884347766873530779261857994032392637450942515837 + 0.0609239674747025 133097814469640574145327771779577841455860*I 1341.30351764627548230978276542627689204122406359796082825 - 0.0344294367015510 135576149187463564582588308663091234952457*I 136 *** lfunzeros: Warning: lfuninit: insufficient initialization. 137[1.76524528537434114004961734014687322242921043467451418, 2.9001948143989959 1383853720458684428845871417117642020713, 4.80912824766302432457595530706768541 139000593962088321171, 6.05385187632329316110398877826905838861120455439163616, 140 7.03104718941202758893296505461247399284219178321418886, 8.0611446646958964 1415370426023193369987671312157987402508, 10.4138094136894319447888631663520554 142801158568510225716, 11.5429326942529531377771432204175144625871573059960913, 143 12.2634871694527156193695773489858842238381199251462399, 13.523913779157256 1448249199285782562251878941627912318795, 14.6267210920659865269412411659252020 145114704423226886093, 15.2588679023455946128303693291132825994525235298638847, 146 17.1471665979791684669746630513532371198945899053737963, 17.924261776515709 1473404867459600570383531919623979762348, 19.2057886412953906115542482837931510 148878888441286200350] 149-189 1501.97848884347766873530779261857994032392637450942515837 + 0.0609239674747025 151097814469640574145327771779577841455860*I 152-191 153x^3 - x - 1 154Curve y^2+(x^3+x^2+1)*y = x^2+x 155-58 156Curve y^2+(x^3+1)*y = x^2+x 157Curve y^2+(x^2+x)*y = x^6+3*x^5+6*x^4+7*x^3+6*x^2+3*x+1 158 *** lfungenus2: Warning: unknown valuation of conductor at 2. 159-58 160Curve y^2=x^5 + x 161-129 162[0, 0, -1] 1632.1541265970381460760215439978358922308 164Curve y^2=x^5 + 1 165-132 166[0, 0, 1] 1671.0314071041733177562983179141216861078 168 *** lfungenus2: Warning: unknown valuation of conductor at 2. 169[[Vecsmall([15]), [3*x^5 + 60*x^4 + 480*x^3 + 1920*x^2 + 3840*x + 3075, [[2, 170 1], [3, 1], [5, 1]]]], 0, [0, 0, 1, 1], 2, 50625, 0] 171Elliptic curves over number fields 172-131 1731.3894051168795718563026565631765059398 174-127 1751.7561367497808959311966399691482152395 176-128 1772.7749792286446646504296418681816946545 178-124 1794.4552267729872870508917049939747968543 180-131 1818.2306621809152393859013012963081422203 182-2 183-22 184Grossencharacter 185-128 1861.0000000000000000000000000000000000000 187tensor product 188 realbitprecision = 64 significant bits (19 decimal digits displayed) 189-65 1901.774264741132682166 191check all formats 192-189 193-189 194-189 195-189 196[1, -2, -3, 2, -2, 6, -1, 0, 6, 4] 197[1, -1, 1, 1, -1, -1, -1, -1, 1, 1] 198[1, -1, 0, 1, 1, 0, 0, -1, 0, -1] 199-191 2001/240 201-1/504 2021/480 203-1/264 204691/65520 205-1/24 2063617/16320 207-43867/28728 2081.00000000000000000000000000000000000000000000000000000 209-1.07637023438345995368832251445133621778701931610742695 2100.661475187921069742727520633979626889791045796292710056 2110.146374542091265989413000913274996215907067384190621201 2120.934830053608610054115427799558087197935200286533499400 2130.661475187921069742727520633979626889791045796292710056 214-190 215-188 216-57 2170 2180.953260474794660686250509013566383496014986229687151072 + 16.29021572039039 21907929631726451921643054665845864660536*I 2200 2211.00000000000000000000000000000000000000000000000000000 222-183 2231.00000000000000000000000000000000000000000000000000000 224-177 225zeta(s-a) 226-188 2271.00000000000000000000000000000000000000000000000000000*x^-1 + O(x^0) 2281.64493406684822643647241516664602518921894990120679844 229-189 230-0.500000000000000000000000000000000000000000000000000000 2311.00000000000000000000000000000000000000000000000000000*x^-1 + O(x^0) 232zeta(s)*zeta(s-a) 233-185 2341.64493406684822643647241516664602518921894990120679844*x^-1 + O(x^0) 2351.97730435029729611819708544148512557208215146666013421 236-186 237-0.822467033424113218236207583323012594609474950603399219 2381.20205690315959428539973816151144999076498629234049888*x^-1 + O(x^0) 239 *** lfunconductor: Warning: #an = 598 < 1444, results may be imprecise. 24061 2411.01542133944024439298806668944681826497337332941038810 242[[147, 202], [147, 202], [147, 202]] 243-188 244[[11, 195], [6, 195]] 2451 2461 2474 248857 249120 250[8, 2108] 251[] 252[[[1, 0.54657288114990636157071248041210027618*x^-1 + O(x^0)]], [[1, 6.64934 25360830715850476062965515423576672*x^-1 + O(x^0)], [0, -6.64934608307158504760 25462965515423576672*x^-1 + O(x^0)]]~, 1] 2551 2565077 257725.0000000000000000 258[725, -52] 25924217.00000000000000 26028614069.00000000000 261-64 262-57 263[1, 0, 1, 0, 1, 0, 2, 0, -2, 0] 264[1, 1 + 1.732050807568877294*I, 1/2 - 0.8660254037844386468*I, -1 + 1.732050 265807568877294*I, -1/2 - 0.8660254037844386468*I, 2, 0, 0, 1 + 1.7320508075688 26677294*I, 1 - 1.732050807568877294*I] 267[1, -1 - 1.732050807568877294*I, 0.5000000000000000001 + 0.86602540378443864 26868*I, -1.000000000000000000 + 1.732050807568877294*I, -1, 1.0000000000000000 26900 - 1.732050807568877294*I, -1 + 1.732050807568877294*I, 0, 0.9999999999999 270999999 - 1.732050807568877294*I, 1 + 1.732050807568877294*I] 2711 272[6, 186] 273[[12, 125], [11, 125], [5, 124]] 2741.000000000000000000 2750.83214280825734611779852282418300471522 + 0.0378612661512960987252330268197 27696281464*I 2770.83214280825734611779852282418300471522 + 0.0378612661512960987252330268197 27896281464*I 279-125 280[1, -127] 2811.6449340668482264364724151666460251892 2821:-54 2832:-35 2843:-43 2854:-31 2865:-38 2876:-25 2887:-22 2890 290 *** lfun: Warning: #an = 1 < 5, results may be imprecise. 2911.6449321944727952165464885195862083681 2920.97075234252284168437606085418663108405 + 0.0794201340278726639136259197680 29322884149*I 294-125 295-123 296-122 297-126 298-124 299-125 300O(x) 301O(x^2) 302O(x^2) 303[0.90384905518988545678200390170972794465 - 2.372435185361247117269703583348 3045504030*I, 2.1076105368263265781937945304702732642 + 2.778690871419041003781 3056785866162988408*I] 3061.3957117832136846124125242709765990227 + 0.19841375090717971815217149623689 307183815*I 308[1.3957117832136846124125242709765990227 + 0.1984137509071797181521714962368 3099183815*I] 310 *** at top-level: lfuntheta(1,0) 311 *** ^-------------- 312 *** lfuntheta: domain error in lfunthetainit: t = 0 313 *** at top-level: lfunhardy(1,I) 314 *** ^-------------- 315 *** lfunhardy: incorrect type in lfunhardy (t_COMPLEX). 316 *** at top-level: lfun(1,2,-1) 317 *** ^------------ 318 *** lfun: domain error in lfun: D <= 0 319 *** at top-level: lfunan(lfuncreate([1,0,[0],1,1,1,1]),10) 320 *** ^---------------------------------------- 321 *** lfunan: incorrect type in vecan_closure (t_INT). 322 *** at top-level: ...t(x^2+1);G=galoisinit(N);lfunartin(N,G,[1]~,2) 323 *** ^--------------------- 324 *** lfunartin: inconsistent dimensions in lfunartin. 325 *** at top-level: ...t(x^2+1);G=galoisinit(N);lfunartin(N,G,[1,1,1] 326 *** ^--------------------- 327 *** lfunartin: inconsistent dimensions in lfunartin. 328 *** at top-level: localbitprec(16);lfun(Lt,12) 329 *** ^----------- 330 *** lfun: incorrect type in vecan_closure (t_INT). 331 *** at top-level: lfun(L,1) 332 *** ^--------- 333 *** lfun: incorrect type in direuler [bad primes] (t_VEC). 334 *** at top-level: lfunzeros(1,[3,1]) 335 *** ^------------------ 336 *** lfunzeros: incorrect type in lfunzeros (t_VEC). 337 *** at top-level: lfuncreate([errbnr,[[1],[2]]]) 338 *** ^------------------------------ 339 *** lfuncreate: incorrect type in lfuncreate [different conductors] (t_VEC). 340 *** at top-level: lfuncreate([errG,[[1],[2]]]) 341 *** ^---------------------------- 342 *** lfuncreate: incorrect type in lfunchiZ (t_VEC). 343 *** at top-level: lfuncreate([errG,[[1,8]~,[1,7]~]]) 344 *** ^---------------------------------- 345 *** lfuncreate: incorrect type in lfuncreate [different conductors] (t_VEC). 346 *** at top-level: lfuncreate([errG,[[1,8]~,[0,1]~]]) 347 *** ^---------------------------------- 348 *** lfuncreate: incorrect type in lfuncreate [different conductors] (t_VEC). 349 *** at top-level: lfunorderzero([errG,[[1,8]~,[1,2]~]]) 350 *** ^------------------------------------- 351 *** lfunorderzero: incorrect type in lfunorderzero [vector-valued] (t_VEC). 352 *** at top-level: ...z)->1,1],0,[0],1,1,1,1]);lfunan(L,5) 353 *** ^----------- 354 *** lfunan: incorrect type in vecan_closure (t_VEC). 355 *** at top-level: ...->1,[1]],0,[0],1,1,1,1]);lfunan(L,5) 356 *** ^----------- 357 *** lfunan: incorrect type in vecan_closure [wrong arity] (t_CLOSURE). 358 *** at top-level: ...->1,[1]],0,[0],1,1,1,1]);lfunan(L,5) 359 *** ^----------- 360 *** lfunan: incorrect type in vecan_closure (t_INT). 361 *** at top-level: ...1,[2,3]],0,[0],1,1,1,1]);lfunan(L,5) 362 *** ^----------- 363 *** lfunan: incorrect type in direuler [bad primes] (t_INT). 364 *** at top-level: ...[[2,3]]],0,[0],1,1,1,1]);lfunan(L,5) 365 *** ^----------- 366 *** lfunan: domain error in direuler: constant term != 1 367 *** at top-level: ...["",3]]],0,[0],1,1,1,1]);lfunan(L,5) 368 *** ^----------- 369 *** lfunan: incorrect type in gtou [integer >=0 expected] (t_STR). 370 *** at top-level: ...[2,""]]],0,[0],1,1,1,1]);lfunan(L,5) 371 *** ^----------- 372 *** lfunan: incorrect type in direuler (t_STR). 373 *** at top-level: lfun([[],[""]],1) 374 *** ^----------------- 375 *** lfun: incorrect type in lfunmisc_to_ldata (t_VEC). 376Total time spent: 5059 377