1 /*
2 pybind11/cast.h: Partial template specializations to cast between
3 C++ and Python types
4
5 Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
6
7 All rights reserved. Use of this source code is governed by a
8 BSD-style license that can be found in the LICENSE file.
9 */
10
11 #pragma once
12
13 #include "pytypes.h"
14 #include "detail/typeid.h"
15 #include "detail/descr.h"
16 #include "detail/internals.h"
17 #include <array>
18 #include <limits>
19 #include <tuple>
20 #include <type_traits>
21
22 #if defined(PYBIND11_CPP17)
23 # if defined(__has_include)
24 # if __has_include(<string_view>)
25 # define PYBIND11_HAS_STRING_VIEW
26 # endif
27 # elif defined(_MSC_VER)
28 # define PYBIND11_HAS_STRING_VIEW
29 # endif
30 #endif
31 #ifdef PYBIND11_HAS_STRING_VIEW
32 #include <string_view>
33 #endif
34
35 NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
NAMESPACE_BEGIN(detail)36 NAMESPACE_BEGIN(detail)
37
38 /// A life support system for temporary objects created by `type_caster::load()`.
39 /// Adding a patient will keep it alive up until the enclosing function returns.
40 class loader_life_support {
41 public:
42 /// A new patient frame is created when a function is entered
43 loader_life_support() {
44 get_internals().loader_patient_stack.push_back(nullptr);
45 }
46
47 /// ... and destroyed after it returns
48 ~loader_life_support() {
49 auto &stack = get_internals().loader_patient_stack;
50 if (stack.empty())
51 pybind11_fail("loader_life_support: internal error");
52
53 auto ptr = stack.back();
54 stack.pop_back();
55 Py_CLEAR(ptr);
56
57 // A heuristic to reduce the stack's capacity (e.g. after long recursive calls)
58 if (stack.capacity() > 16 && stack.size() != 0 && stack.capacity() / stack.size() > 2)
59 stack.shrink_to_fit();
60 }
61
62 /// This can only be used inside a pybind11-bound function, either by `argument_loader`
63 /// at argument preparation time or by `py::cast()` at execution time.
64 PYBIND11_NOINLINE static void add_patient(handle h) {
65 auto &stack = get_internals().loader_patient_stack;
66 if (stack.empty())
67 throw cast_error("When called outside a bound function, py::cast() cannot "
68 "do Python -> C++ conversions which require the creation "
69 "of temporary values");
70
71 auto &list_ptr = stack.back();
72 if (list_ptr == nullptr) {
73 list_ptr = PyList_New(1);
74 if (!list_ptr)
75 pybind11_fail("loader_life_support: error allocating list");
76 PyList_SET_ITEM(list_ptr, 0, h.inc_ref().ptr());
77 } else {
78 auto result = PyList_Append(list_ptr, h.ptr());
79 if (result == -1)
80 pybind11_fail("loader_life_support: error adding patient");
81 }
82 }
83 };
84
85 // Gets the cache entry for the given type, creating it if necessary. The return value is the pair
86 // returned by emplace, i.e. an iterator for the entry and a bool set to `true` if the entry was
87 // just created.
88 inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type);
89
90 // Populates a just-created cache entry.
all_type_info_populate(PyTypeObject * t,std::vector<type_info * > & bases)91 PYBIND11_NOINLINE inline void all_type_info_populate(PyTypeObject *t, std::vector<type_info *> &bases) {
92 std::vector<PyTypeObject *> check;
93 for (handle parent : reinterpret_borrow<tuple>(t->tp_bases))
94 check.push_back((PyTypeObject *) parent.ptr());
95
96 auto const &type_dict = get_internals().registered_types_py;
97 for (size_t i = 0; i < check.size(); i++) {
98 auto type = check[i];
99 // Ignore Python2 old-style class super type:
100 if (!PyType_Check((PyObject *) type)) continue;
101
102 // Check `type` in the current set of registered python types:
103 auto it = type_dict.find(type);
104 if (it != type_dict.end()) {
105 // We found a cache entry for it, so it's either pybind-registered or has pre-computed
106 // pybind bases, but we have to make sure we haven't already seen the type(s) before: we
107 // want to follow Python/virtual C++ rules that there should only be one instance of a
108 // common base.
109 for (auto *tinfo : it->second) {
110 // NB: Could use a second set here, rather than doing a linear search, but since
111 // having a large number of immediate pybind11-registered types seems fairly
112 // unlikely, that probably isn't worthwhile.
113 bool found = false;
114 for (auto *known : bases) {
115 if (known == tinfo) { found = true; break; }
116 }
117 if (!found) bases.push_back(tinfo);
118 }
119 }
120 else if (type->tp_bases) {
121 // It's some python type, so keep follow its bases classes to look for one or more
122 // registered types
123 if (i + 1 == check.size()) {
124 // When we're at the end, we can pop off the current element to avoid growing
125 // `check` when adding just one base (which is typical--i.e. when there is no
126 // multiple inheritance)
127 check.pop_back();
128 i--;
129 }
130 for (handle parent : reinterpret_borrow<tuple>(type->tp_bases))
131 check.push_back((PyTypeObject *) parent.ptr());
132 }
133 }
134 }
135
136 /**
137 * Extracts vector of type_info pointers of pybind-registered roots of the given Python type. Will
138 * be just 1 pybind type for the Python type of a pybind-registered class, or for any Python-side
139 * derived class that uses single inheritance. Will contain as many types as required for a Python
140 * class that uses multiple inheritance to inherit (directly or indirectly) from multiple
141 * pybind-registered classes. Will be empty if neither the type nor any base classes are
142 * pybind-registered.
143 *
144 * The value is cached for the lifetime of the Python type.
145 */
all_type_info(PyTypeObject * type)146 inline const std::vector<detail::type_info *> &all_type_info(PyTypeObject *type) {
147 auto ins = all_type_info_get_cache(type);
148 if (ins.second)
149 // New cache entry: populate it
150 all_type_info_populate(type, ins.first->second);
151
152 return ins.first->second;
153 }
154
155 /**
156 * Gets a single pybind11 type info for a python type. Returns nullptr if neither the type nor any
157 * ancestors are pybind11-registered. Throws an exception if there are multiple bases--use
158 * `all_type_info` instead if you want to support multiple bases.
159 */
get_type_info(PyTypeObject * type)160 PYBIND11_NOINLINE inline detail::type_info* get_type_info(PyTypeObject *type) {
161 auto &bases = all_type_info(type);
162 if (bases.size() == 0)
163 return nullptr;
164 if (bases.size() > 1)
165 pybind11_fail("pybind11::detail::get_type_info: type has multiple pybind11-registered bases");
166 return bases.front();
167 }
168
get_local_type_info(const std::type_index & tp)169 inline detail::type_info *get_local_type_info(const std::type_index &tp) {
170 auto &locals = registered_local_types_cpp();
171 auto it = locals.find(tp);
172 if (it != locals.end())
173 return it->second;
174 return nullptr;
175 }
176
get_global_type_info(const std::type_index & tp)177 inline detail::type_info *get_global_type_info(const std::type_index &tp) {
178 auto &types = get_internals().registered_types_cpp;
179 auto it = types.find(tp);
180 if (it != types.end())
181 return it->second;
182 return nullptr;
183 }
184
185 /// Return the type info for a given C++ type; on lookup failure can either throw or return nullptr.
186 PYBIND11_NOINLINE inline detail::type_info *get_type_info(const std::type_index &tp,
187 bool throw_if_missing = false) {
188 if (auto ltype = get_local_type_info(tp))
189 return ltype;
190 if (auto gtype = get_global_type_info(tp))
191 return gtype;
192
193 if (throw_if_missing) {
194 std::string tname = tp.name();
195 detail::clean_type_id(tname);
196 pybind11_fail("pybind11::detail::get_type_info: unable to find type info for \"" + tname + "\"");
197 }
198 return nullptr;
199 }
200
get_type_handle(const std::type_info & tp,bool throw_if_missing)201 PYBIND11_NOINLINE inline handle get_type_handle(const std::type_info &tp, bool throw_if_missing) {
202 detail::type_info *type_info = get_type_info(tp, throw_if_missing);
203 return handle(type_info ? ((PyObject *) type_info->type) : nullptr);
204 }
205
206 struct value_and_holder {
207 instance *inst = nullptr;
208 size_t index = 0u;
209 const detail::type_info *type = nullptr;
210 void **vh = nullptr;
211
212 // Main constructor for a found value/holder:
value_and_holdervalue_and_holder213 value_and_holder(instance *i, const detail::type_info *type, size_t vpos, size_t index) :
214 inst{i}, index{index}, type{type},
215 vh{inst->simple_layout ? inst->simple_value_holder : &inst->nonsimple.values_and_holders[vpos]}
216 {}
217
218 // Default constructor (used to signal a value-and-holder not found by get_value_and_holder())
value_and_holdervalue_and_holder219 value_and_holder() {}
220
221 // Used for past-the-end iterator
value_and_holdervalue_and_holder222 value_and_holder(size_t index) : index{index} {}
223
value_ptrvalue_and_holder224 template <typename V = void> V *&value_ptr() const {
225 return reinterpret_cast<V *&>(vh[0]);
226 }
227 // True if this `value_and_holder` has a non-null value pointer
228 explicit operator bool() const { return value_ptr(); }
229
holdervalue_and_holder230 template <typename H> H &holder() const {
231 return reinterpret_cast<H &>(vh[1]);
232 }
holder_constructedvalue_and_holder233 bool holder_constructed() const {
234 return inst->simple_layout
235 ? inst->simple_holder_constructed
236 : inst->nonsimple.status[index] & instance::status_holder_constructed;
237 }
238 void set_holder_constructed(bool v = true) {
239 if (inst->simple_layout)
240 inst->simple_holder_constructed = v;
241 else if (v)
242 inst->nonsimple.status[index] |= instance::status_holder_constructed;
243 else
244 inst->nonsimple.status[index] &= (uint8_t) ~instance::status_holder_constructed;
245 }
instance_registeredvalue_and_holder246 bool instance_registered() const {
247 return inst->simple_layout
248 ? inst->simple_instance_registered
249 : inst->nonsimple.status[index] & instance::status_instance_registered;
250 }
251 void set_instance_registered(bool v = true) {
252 if (inst->simple_layout)
253 inst->simple_instance_registered = v;
254 else if (v)
255 inst->nonsimple.status[index] |= instance::status_instance_registered;
256 else
257 inst->nonsimple.status[index] &= (uint8_t) ~instance::status_instance_registered;
258 }
259 };
260
261 // Container for accessing and iterating over an instance's values/holders
262 struct values_and_holders {
263 private:
264 instance *inst;
265 using type_vec = std::vector<detail::type_info *>;
266 const type_vec &tinfo;
267
268 public:
values_and_holdersvalues_and_holders269 values_and_holders(instance *inst) : inst{inst}, tinfo(all_type_info(Py_TYPE(inst))) {}
270
271 struct iterator {
272 private:
273 instance *inst = nullptr;
274 const type_vec *types = nullptr;
275 value_and_holder curr;
276 friend struct values_and_holders;
iteratorvalues_and_holders::iterator277 iterator(instance *inst, const type_vec *tinfo)
278 : inst{inst}, types{tinfo},
279 curr(inst /* instance */,
280 types->empty() ? nullptr : (*types)[0] /* type info */,
281 0, /* vpos: (non-simple types only): the first vptr comes first */
282 0 /* index */)
283 {}
284 // Past-the-end iterator:
iteratorvalues_and_holders::iterator285 iterator(size_t end) : curr(end) {}
286 public:
287 bool operator==(const iterator &other) { return curr.index == other.curr.index; }
288 bool operator!=(const iterator &other) { return curr.index != other.curr.index; }
289 iterator &operator++() {
290 if (!inst->simple_layout)
291 curr.vh += 1 + (*types)[curr.index]->holder_size_in_ptrs;
292 ++curr.index;
293 curr.type = curr.index < types->size() ? (*types)[curr.index] : nullptr;
294 return *this;
295 }
296 value_and_holder &operator*() { return curr; }
297 value_and_holder *operator->() { return &curr; }
298 };
299
beginvalues_and_holders300 iterator begin() { return iterator(inst, &tinfo); }
endvalues_and_holders301 iterator end() { return iterator(tinfo.size()); }
302
findvalues_and_holders303 iterator find(const type_info *find_type) {
304 auto it = begin(), endit = end();
305 while (it != endit && it->type != find_type) ++it;
306 return it;
307 }
308
sizevalues_and_holders309 size_t size() { return tinfo.size(); }
310 };
311
312 /**
313 * Extracts C++ value and holder pointer references from an instance (which may contain multiple
314 * values/holders for python-side multiple inheritance) that match the given type. Throws an error
315 * if the given type (or ValueType, if omitted) is not a pybind11 base of the given instance. If
316 * `find_type` is omitted (or explicitly specified as nullptr) the first value/holder are returned,
317 * regardless of type (and the resulting .type will be nullptr).
318 *
319 * The returned object should be short-lived: in particular, it must not outlive the called-upon
320 * instance.
321 */
get_value_and_holder(const type_info * find_type,bool throw_if_missing)322 PYBIND11_NOINLINE inline value_and_holder instance::get_value_and_holder(const type_info *find_type /*= nullptr default in common.h*/, bool throw_if_missing /*= true in common.h*/) {
323 // Optimize common case:
324 if (!find_type || Py_TYPE(this) == find_type->type)
325 return value_and_holder(this, find_type, 0, 0);
326
327 detail::values_and_holders vhs(this);
328 auto it = vhs.find(find_type);
329 if (it != vhs.end())
330 return *it;
331
332 if (!throw_if_missing)
333 return value_and_holder();
334
335 #if defined(NDEBUG)
336 pybind11_fail("pybind11::detail::instance::get_value_and_holder: "
337 "type is not a pybind11 base of the given instance "
338 "(compile in debug mode for type details)");
339 #else
340 pybind11_fail("pybind11::detail::instance::get_value_and_holder: `" +
341 std::string(find_type->type->tp_name) + "' is not a pybind11 base of the given `" +
342 std::string(Py_TYPE(this)->tp_name) + "' instance");
343 #endif
344 }
345
allocate_layout()346 PYBIND11_NOINLINE inline void instance::allocate_layout() {
347 auto &tinfo = all_type_info(Py_TYPE(this));
348
349 const size_t n_types = tinfo.size();
350
351 if (n_types == 0)
352 pybind11_fail("instance allocation failed: new instance has no pybind11-registered base types");
353
354 simple_layout =
355 n_types == 1 && tinfo.front()->holder_size_in_ptrs <= instance_simple_holder_in_ptrs();
356
357 // Simple path: no python-side multiple inheritance, and a small-enough holder
358 if (simple_layout) {
359 simple_value_holder[0] = nullptr;
360 simple_holder_constructed = false;
361 simple_instance_registered = false;
362 }
363 else { // multiple base types or a too-large holder
364 // Allocate space to hold: [v1*][h1][v2*][h2]...[bb...] where [vN*] is a value pointer,
365 // [hN] is the (uninitialized) holder instance for value N, and [bb...] is a set of bool
366 // values that tracks whether each associated holder has been initialized. Each [block] is
367 // padded, if necessary, to an integer multiple of sizeof(void *).
368 size_t space = 0;
369 for (auto t : tinfo) {
370 space += 1; // value pointer
371 space += t->holder_size_in_ptrs; // holder instance
372 }
373 size_t flags_at = space;
374 space += size_in_ptrs(n_types); // status bytes (holder_constructed and instance_registered)
375
376 // Allocate space for flags, values, and holders, and initialize it to 0 (flags and values,
377 // in particular, need to be 0). Use Python's memory allocation functions: in Python 3.6
378 // they default to using pymalloc, which is designed to be efficient for small allocations
379 // like the one we're doing here; in earlier versions (and for larger allocations) they are
380 // just wrappers around malloc.
381 #if PY_VERSION_HEX >= 0x03050000
382 nonsimple.values_and_holders = (void **) PyMem_Calloc(space, sizeof(void *));
383 if (!nonsimple.values_and_holders) throw std::bad_alloc();
384 #else
385 nonsimple.values_and_holders = (void **) PyMem_New(void *, space);
386 if (!nonsimple.values_and_holders) throw std::bad_alloc();
387 std::memset(nonsimple.values_and_holders, 0, space * sizeof(void *));
388 #endif
389 nonsimple.status = reinterpret_cast<uint8_t *>(&nonsimple.values_and_holders[flags_at]);
390 }
391 owned = true;
392 }
393
deallocate_layout()394 PYBIND11_NOINLINE inline void instance::deallocate_layout() {
395 if (!simple_layout)
396 PyMem_Free(nonsimple.values_and_holders);
397 }
398
isinstance_generic(handle obj,const std::type_info & tp)399 PYBIND11_NOINLINE inline bool isinstance_generic(handle obj, const std::type_info &tp) {
400 handle type = detail::get_type_handle(tp, false);
401 if (!type)
402 return false;
403 return isinstance(obj, type);
404 }
405
error_string()406 PYBIND11_NOINLINE inline std::string error_string() {
407 if (!PyErr_Occurred()) {
408 PyErr_SetString(PyExc_RuntimeError, "Unknown internal error occurred");
409 return "Unknown internal error occurred";
410 }
411
412 error_scope scope; // Preserve error state
413
414 std::string errorString;
415 if (scope.type) {
416 errorString += handle(scope.type).attr("__name__").cast<std::string>();
417 errorString += ": ";
418 }
419 if (scope.value)
420 errorString += (std::string) str(scope.value);
421
422 PyErr_NormalizeException(&scope.type, &scope.value, &scope.trace);
423
424 #if PY_MAJOR_VERSION >= 3
425 if (scope.trace != nullptr)
426 PyException_SetTraceback(scope.value, scope.trace);
427 #endif
428
429 #if !defined(PYPY_VERSION)
430 if (scope.trace) {
431 PyTracebackObject *trace = (PyTracebackObject *) scope.trace;
432
433 /* Get the deepest trace possible */
434 while (trace->tb_next)
435 trace = trace->tb_next;
436
437 PyFrameObject *frame = trace->tb_frame;
438 errorString += "\n\nAt:\n";
439 while (frame) {
440 int lineno = PyFrame_GetLineNumber(frame);
441 errorString +=
442 " " + handle(frame->f_code->co_filename).cast<std::string>() +
443 "(" + std::to_string(lineno) + "): " +
444 handle(frame->f_code->co_name).cast<std::string>() + "\n";
445 frame = frame->f_back;
446 }
447 }
448 #endif
449
450 return errorString;
451 }
452
get_object_handle(const void * ptr,const detail::type_info * type)453 PYBIND11_NOINLINE inline handle get_object_handle(const void *ptr, const detail::type_info *type ) {
454 auto &instances = get_internals().registered_instances;
455 auto range = instances.equal_range(ptr);
456 for (auto it = range.first; it != range.second; ++it) {
457 for (auto vh : values_and_holders(it->second)) {
458 if (vh.type == type)
459 return handle((PyObject *) it->second);
460 }
461 }
462 return handle();
463 }
464
get_thread_state_unchecked()465 inline PyThreadState *get_thread_state_unchecked() {
466 #if defined(PYPY_VERSION)
467 return PyThreadState_GET();
468 #elif PY_VERSION_HEX < 0x03000000
469 return _PyThreadState_Current;
470 #elif PY_VERSION_HEX < 0x03050000
471 return (PyThreadState*) _Py_atomic_load_relaxed(&_PyThreadState_Current);
472 #elif PY_VERSION_HEX < 0x03050200
473 return (PyThreadState*) _PyThreadState_Current.value;
474 #else
475 return _PyThreadState_UncheckedGet();
476 #endif
477 }
478
479 // Forward declarations
480 inline void keep_alive_impl(handle nurse, handle patient);
481 inline PyObject *make_new_instance(PyTypeObject *type);
482
483 class type_caster_generic {
484 public:
type_caster_generic(const std::type_info & type_info)485 PYBIND11_NOINLINE type_caster_generic(const std::type_info &type_info)
486 : typeinfo(get_type_info(type_info)), cpptype(&type_info) { }
487
type_caster_generic(const type_info * typeinfo)488 type_caster_generic(const type_info *typeinfo)
489 : typeinfo(typeinfo), cpptype(typeinfo ? typeinfo->cpptype : nullptr) { }
490
load(handle src,bool convert)491 bool load(handle src, bool convert) {
492 return load_impl<type_caster_generic>(src, convert);
493 }
494
495 PYBIND11_NOINLINE static handle cast(const void *_src, return_value_policy policy, handle parent,
496 const detail::type_info *tinfo,
497 void *(*copy_constructor)(const void *),
498 void *(*move_constructor)(const void *),
499 const void *existing_holder = nullptr) {
500 if (!tinfo) // no type info: error will be set already
501 return handle();
502
503 void *src = const_cast<void *>(_src);
504 if (src == nullptr)
505 return none().release();
506
507 auto it_instances = get_internals().registered_instances.equal_range(src);
508 for (auto it_i = it_instances.first; it_i != it_instances.second; ++it_i) {
509 for (auto instance_type : detail::all_type_info(Py_TYPE(it_i->second))) {
510 if (instance_type && same_type(*instance_type->cpptype, *tinfo->cpptype))
511 return handle((PyObject *) it_i->second).inc_ref();
512 }
513 }
514
515 auto inst = reinterpret_steal<object>(make_new_instance(tinfo->type));
516 auto wrapper = reinterpret_cast<instance *>(inst.ptr());
517 wrapper->owned = false;
518 void *&valueptr = values_and_holders(wrapper).begin()->value_ptr();
519
520 switch (policy) {
521 case return_value_policy::automatic:
522 case return_value_policy::take_ownership:
523 valueptr = src;
524 wrapper->owned = true;
525 break;
526
527 case return_value_policy::automatic_reference:
528 case return_value_policy::reference:
529 valueptr = src;
530 wrapper->owned = false;
531 break;
532
533 case return_value_policy::copy:
534 if (copy_constructor)
535 valueptr = copy_constructor(src);
536 else
537 throw cast_error("return_value_policy = copy, but the "
538 "object is non-copyable!");
539 wrapper->owned = true;
540 break;
541
542 case return_value_policy::move:
543 if (move_constructor)
544 valueptr = move_constructor(src);
545 else if (copy_constructor)
546 valueptr = copy_constructor(src);
547 else
548 throw cast_error("return_value_policy = move, but the "
549 "object is neither movable nor copyable!");
550 wrapper->owned = true;
551 break;
552
553 case return_value_policy::reference_internal:
554 valueptr = src;
555 wrapper->owned = false;
556 keep_alive_impl(inst, parent);
557 break;
558
559 default:
560 throw cast_error("unhandled return_value_policy: should not happen!");
561 }
562
563 tinfo->init_instance(wrapper, existing_holder);
564
565 return inst.release();
566 }
567
568 // Base methods for generic caster; there are overridden in copyable_holder_caster
load_value(value_and_holder && v_h)569 void load_value(value_and_holder &&v_h) {
570 auto *&vptr = v_h.value_ptr();
571 // Lazy allocation for unallocated values:
572 if (vptr == nullptr) {
573 auto *type = v_h.type ? v_h.type : typeinfo;
574 if (type->operator_new) {
575 vptr = type->operator_new(type->type_size);
576 } else {
577 #if defined(PYBIND11_CPP17)
578 if (type->type_align > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
579 vptr = ::operator new(type->type_size,
580 (std::align_val_t) type->type_align);
581 else
582 #endif
583 vptr = ::operator new(type->type_size);
584 }
585 }
586 value = vptr;
587 }
try_implicit_casts(handle src,bool convert)588 bool try_implicit_casts(handle src, bool convert) {
589 for (auto &cast : typeinfo->implicit_casts) {
590 type_caster_generic sub_caster(*cast.first);
591 if (sub_caster.load(src, convert)) {
592 value = cast.second(sub_caster.value);
593 return true;
594 }
595 }
596 return false;
597 }
try_direct_conversions(handle src)598 bool try_direct_conversions(handle src) {
599 for (auto &converter : *typeinfo->direct_conversions) {
600 if (converter(src.ptr(), value))
601 return true;
602 }
603 return false;
604 }
check_holder_compat()605 void check_holder_compat() {}
606
local_load(PyObject * src,const type_info * ti)607 PYBIND11_NOINLINE static void *local_load(PyObject *src, const type_info *ti) {
608 auto caster = type_caster_generic(ti);
609 if (caster.load(src, false))
610 return caster.value;
611 return nullptr;
612 }
613
614 /// Try to load with foreign typeinfo, if available. Used when there is no
615 /// native typeinfo, or when the native one wasn't able to produce a value.
try_load_foreign_module_local(handle src)616 PYBIND11_NOINLINE bool try_load_foreign_module_local(handle src) {
617 constexpr auto *local_key = PYBIND11_MODULE_LOCAL_ID;
618 const auto pytype = src.get_type();
619 if (!hasattr(pytype, local_key))
620 return false;
621
622 type_info *foreign_typeinfo = reinterpret_borrow<capsule>(getattr(pytype, local_key));
623 // Only consider this foreign loader if actually foreign and is a loader of the correct cpp type
624 if (foreign_typeinfo->module_local_load == &local_load
625 || (cpptype && !same_type(*cpptype, *foreign_typeinfo->cpptype)))
626 return false;
627
628 if (auto result = foreign_typeinfo->module_local_load(src.ptr(), foreign_typeinfo)) {
629 value = result;
630 return true;
631 }
632 return false;
633 }
634
635 // Implementation of `load`; this takes the type of `this` so that it can dispatch the relevant
636 // bits of code between here and copyable_holder_caster where the two classes need different
637 // logic (without having to resort to virtual inheritance).
638 template <typename ThisT>
load_impl(handle src,bool convert)639 PYBIND11_NOINLINE bool load_impl(handle src, bool convert) {
640 if (!src) return false;
641 if (!typeinfo) return try_load_foreign_module_local(src);
642 if (src.is_none()) {
643 // Defer accepting None to other overloads (if we aren't in convert mode):
644 if (!convert) return false;
645 value = nullptr;
646 return true;
647 }
648
649 auto &this_ = static_cast<ThisT &>(*this);
650 this_.check_holder_compat();
651
652 PyTypeObject *srctype = Py_TYPE(src.ptr());
653
654 // Case 1: If src is an exact type match for the target type then we can reinterpret_cast
655 // the instance's value pointer to the target type:
656 if (srctype == typeinfo->type) {
657 this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
658 return true;
659 }
660 // Case 2: We have a derived class
661 else if (PyType_IsSubtype(srctype, typeinfo->type)) {
662 auto &bases = all_type_info(srctype);
663 bool no_cpp_mi = typeinfo->simple_type;
664
665 // Case 2a: the python type is a Python-inherited derived class that inherits from just
666 // one simple (no MI) pybind11 class, or is an exact match, so the C++ instance is of
667 // the right type and we can use reinterpret_cast.
668 // (This is essentially the same as case 2b, but because not using multiple inheritance
669 // is extremely common, we handle it specially to avoid the loop iterator and type
670 // pointer lookup overhead)
671 if (bases.size() == 1 && (no_cpp_mi || bases.front()->type == typeinfo->type)) {
672 this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder());
673 return true;
674 }
675 // Case 2b: the python type inherits from multiple C++ bases. Check the bases to see if
676 // we can find an exact match (or, for a simple C++ type, an inherited match); if so, we
677 // can safely reinterpret_cast to the relevant pointer.
678 else if (bases.size() > 1) {
679 for (auto base : bases) {
680 if (no_cpp_mi ? PyType_IsSubtype(base->type, typeinfo->type) : base->type == typeinfo->type) {
681 this_.load_value(reinterpret_cast<instance *>(src.ptr())->get_value_and_holder(base));
682 return true;
683 }
684 }
685 }
686
687 // Case 2c: C++ multiple inheritance is involved and we couldn't find an exact type match
688 // in the registered bases, above, so try implicit casting (needed for proper C++ casting
689 // when MI is involved).
690 if (this_.try_implicit_casts(src, convert))
691 return true;
692 }
693
694 // Perform an implicit conversion
695 if (convert) {
696 for (auto &converter : typeinfo->implicit_conversions) {
697 auto temp = reinterpret_steal<object>(converter(src.ptr(), typeinfo->type));
698 if (load_impl<ThisT>(temp, false)) {
699 loader_life_support::add_patient(temp);
700 return true;
701 }
702 }
703 if (this_.try_direct_conversions(src))
704 return true;
705 }
706
707 // Failed to match local typeinfo. Try again with global.
708 if (typeinfo->module_local) {
709 if (auto gtype = get_global_type_info(*typeinfo->cpptype)) {
710 typeinfo = gtype;
711 return load(src, false);
712 }
713 }
714
715 // Global typeinfo has precedence over foreign module_local
716 return try_load_foreign_module_local(src);
717 }
718
719
720 // Called to do type lookup and wrap the pointer and type in a pair when a dynamic_cast
721 // isn't needed or can't be used. If the type is unknown, sets the error and returns a pair
722 // with .second = nullptr. (p.first = nullptr is not an error: it becomes None).
723 PYBIND11_NOINLINE static std::pair<const void *, const type_info *> src_and_type(
724 const void *src, const std::type_info &cast_type, const std::type_info *rtti_type = nullptr) {
725 if (auto *tpi = get_type_info(cast_type))
726 return {src, const_cast<const type_info *>(tpi)};
727
728 // Not found, set error:
729 std::string tname = rtti_type ? rtti_type->name() : cast_type.name();
730 detail::clean_type_id(tname);
731 std::string msg = "Unregistered type : " + tname;
732 PyErr_SetString(PyExc_TypeError, msg.c_str());
733 return {nullptr, nullptr};
734 }
735
736 const type_info *typeinfo = nullptr;
737 const std::type_info *cpptype = nullptr;
738 void *value = nullptr;
739 };
740
741 /**
742 * Determine suitable casting operator for pointer-or-lvalue-casting type casters. The type caster
743 * needs to provide `operator T*()` and `operator T&()` operators.
744 *
745 * If the type supports moving the value away via an `operator T&&() &&` method, it should use
746 * `movable_cast_op_type` instead.
747 */
748 template <typename T>
749 using cast_op_type =
750 conditional_t<std::is_pointer<remove_reference_t<T>>::value,
751 typename std::add_pointer<intrinsic_t<T>>::type,
752 typename std::add_lvalue_reference<intrinsic_t<T>>::type>;
753
754 /**
755 * Determine suitable casting operator for a type caster with a movable value. Such a type caster
756 * needs to provide `operator T*()`, `operator T&()`, and `operator T&&() &&`. The latter will be
757 * called in appropriate contexts where the value can be moved rather than copied.
758 *
759 * These operator are automatically provided when using the PYBIND11_TYPE_CASTER macro.
760 */
761 template <typename T>
762 using movable_cast_op_type =
763 conditional_t<std::is_pointer<typename std::remove_reference<T>::type>::value,
764 typename std::add_pointer<intrinsic_t<T>>::type,
765 conditional_t<std::is_rvalue_reference<T>::value,
766 typename std::add_rvalue_reference<intrinsic_t<T>>::type,
767 typename std::add_lvalue_reference<intrinsic_t<T>>::type>>;
768
769 // std::is_copy_constructible isn't quite enough: it lets std::vector<T> (and similar) through when
770 // T is non-copyable, but code containing such a copy constructor fails to actually compile.
771 template <typename T, typename SFINAE = void> struct is_copy_constructible : std::is_copy_constructible<T> {};
772
773 // Specialization for types that appear to be copy constructible but also look like stl containers
774 // (we specifically check for: has `value_type` and `reference` with `reference = value_type&`): if
775 // so, copy constructability depends on whether the value_type is copy constructible.
776 template <typename Container> struct is_copy_constructible<Container, enable_if_t<all_of<
777 std::is_copy_constructible<Container>,
778 std::is_same<typename Container::value_type &, typename Container::reference>,
779 // Avoid infinite recursion
780 negation<std::is_same<Container, typename Container::value_type>>
781 >::value>> : is_copy_constructible<typename Container::value_type> {};
782
783 #if !defined(PYBIND11_CPP17)
784 // Likewise for std::pair before C++17 (which mandates that the copy constructor not exist when the
785 // two types aren't themselves copy constructible).
786 template <typename T1, typename T2> struct is_copy_constructible<std::pair<T1, T2>>
787 : all_of<is_copy_constructible<T1>, is_copy_constructible<T2>> {};
788 #endif
789
790 NAMESPACE_END(detail)
791
792 // polymorphic_type_hook<itype>::get(src, tinfo) determines whether the object pointed
793 // to by `src` actually is an instance of some class derived from `itype`.
794 // If so, it sets `tinfo` to point to the std::type_info representing that derived
795 // type, and returns a pointer to the start of the most-derived object of that type
796 // (in which `src` is a subobject; this will be the same address as `src` in most
797 // single inheritance cases). If not, or if `src` is nullptr, it simply returns `src`
798 // and leaves `tinfo` at its default value of nullptr.
799 //
800 // The default polymorphic_type_hook just returns src. A specialization for polymorphic
801 // types determines the runtime type of the passed object and adjusts the this-pointer
802 // appropriately via dynamic_cast<void*>. This is what enables a C++ Animal* to appear
803 // to Python as a Dog (if Dog inherits from Animal, Animal is polymorphic, Dog is
804 // registered with pybind11, and this Animal is in fact a Dog).
805 //
806 // You may specialize polymorphic_type_hook yourself for types that want to appear
807 // polymorphic to Python but do not use C++ RTTI. (This is a not uncommon pattern
808 // in performance-sensitive applications, used most notably in LLVM.)
809 template <typename itype, typename SFINAE = void>
810 struct polymorphic_type_hook
811 {
812 static const void *get(const itype *src, const std::type_info*&) { return src; }
813 };
814 template <typename itype>
815 struct polymorphic_type_hook<itype, detail::enable_if_t<std::is_polymorphic<itype>::value>>
816 {
817 static const void *get(const itype *src, const std::type_info*& type) {
818 type = src ? &typeid(*src) : nullptr;
819 return dynamic_cast<const void*>(src);
820 }
821 };
822
823 NAMESPACE_BEGIN(detail)
824
825 /// Generic type caster for objects stored on the heap
826 template <typename type> class type_caster_base : public type_caster_generic {
827 using itype = intrinsic_t<type>;
828
829 public:
830 static constexpr auto name = _<type>();
831
832 type_caster_base() : type_caster_base(typeid(type)) { }
833 explicit type_caster_base(const std::type_info &info) : type_caster_generic(info) { }
834
835 static handle cast(const itype &src, return_value_policy policy, handle parent) {
836 if (policy == return_value_policy::automatic || policy == return_value_policy::automatic_reference)
837 policy = return_value_policy::copy;
838 return cast(&src, policy, parent);
839 }
840
841 static handle cast(itype &&src, return_value_policy, handle parent) {
842 return cast(&src, return_value_policy::move, parent);
843 }
844
845 // Returns a (pointer, type_info) pair taking care of necessary type lookup for a
846 // polymorphic type (using RTTI by default, but can be overridden by specializing
847 // polymorphic_type_hook). If the instance isn't derived, returns the base version.
848 static std::pair<const void *, const type_info *> src_and_type(const itype *src) {
849 auto &cast_type = typeid(itype);
850 const std::type_info *instance_type = nullptr;
851 const void *vsrc = polymorphic_type_hook<itype>::get(src, instance_type);
852 if (instance_type && !same_type(cast_type, *instance_type)) {
853 // This is a base pointer to a derived type. If the derived type is registered
854 // with pybind11, we want to make the full derived object available.
855 // In the typical case where itype is polymorphic, we get the correct
856 // derived pointer (which may be != base pointer) by a dynamic_cast to
857 // most derived type. If itype is not polymorphic, we won't get here
858 // except via a user-provided specialization of polymorphic_type_hook,
859 // and the user has promised that no this-pointer adjustment is
860 // required in that case, so it's OK to use static_cast.
861 if (const auto *tpi = get_type_info(*instance_type))
862 return {vsrc, tpi};
863 }
864 // Otherwise we have either a nullptr, an `itype` pointer, or an unknown derived pointer, so
865 // don't do a cast
866 return type_caster_generic::src_and_type(src, cast_type, instance_type);
867 }
868
869 static handle cast(const itype *src, return_value_policy policy, handle parent) {
870 auto st = src_and_type(src);
871 return type_caster_generic::cast(
872 st.first, policy, parent, st.second,
873 make_copy_constructor(src), make_move_constructor(src));
874 }
875
876 static handle cast_holder(const itype *src, const void *holder) {
877 auto st = src_and_type(src);
878 return type_caster_generic::cast(
879 st.first, return_value_policy::take_ownership, {}, st.second,
880 nullptr, nullptr, holder);
881 }
882
883 template <typename T> using cast_op_type = detail::cast_op_type<T>;
884
885 operator itype*() { return (type *) value; }
886 operator itype&() { if (!value) throw reference_cast_error(); return *((itype *) value); }
887
888 protected:
889 using Constructor = void *(*)(const void *);
890
891 /* Only enabled when the types are {copy,move}-constructible *and* when the type
892 does not have a private operator new implementation. */
893 template <typename T, typename = enable_if_t<is_copy_constructible<T>::value>>
894 static auto make_copy_constructor(const T *x) -> decltype(new T(*x), Constructor{}) {
895 return [](const void *arg) -> void * {
896 return new T(*reinterpret_cast<const T *>(arg));
897 };
898 }
899
900 template <typename T, typename = enable_if_t<std::is_move_constructible<T>::value>>
901 static auto make_move_constructor(const T *x) -> decltype(new T(std::move(*const_cast<T *>(x))), Constructor{}) {
902 return [](const void *arg) -> void * {
903 return new T(std::move(*const_cast<T *>(reinterpret_cast<const T *>(arg))));
904 };
905 }
906
907 static Constructor make_copy_constructor(...) { return nullptr; }
908 static Constructor make_move_constructor(...) { return nullptr; }
909 };
910
911 template <typename type, typename SFINAE = void> class type_caster : public type_caster_base<type> { };
912 template <typename type> using make_caster = type_caster<intrinsic_t<type>>;
913
914 // Shortcut for calling a caster's `cast_op_type` cast operator for casting a type_caster to a T
915 template <typename T> typename make_caster<T>::template cast_op_type<T> cast_op(make_caster<T> &caster) {
916 return caster.operator typename make_caster<T>::template cast_op_type<T>();
917 }
918 template <typename T> typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>
919 cast_op(make_caster<T> &&caster) {
920 return std::move(caster).operator
921 typename make_caster<T>::template cast_op_type<typename std::add_rvalue_reference<T>::type>();
922 }
923
924 template <typename type> class type_caster<std::reference_wrapper<type>> {
925 private:
926 using caster_t = make_caster<type>;
927 caster_t subcaster;
928 using subcaster_cast_op_type = typename caster_t::template cast_op_type<type>;
929 static_assert(std::is_same<typename std::remove_const<type>::type &, subcaster_cast_op_type>::value,
930 "std::reference_wrapper<T> caster requires T to have a caster with an `T &` operator");
931 public:
932 bool load(handle src, bool convert) { return subcaster.load(src, convert); }
933 static constexpr auto name = caster_t::name;
934 static handle cast(const std::reference_wrapper<type> &src, return_value_policy policy, handle parent) {
935 // It is definitely wrong to take ownership of this pointer, so mask that rvp
936 if (policy == return_value_policy::take_ownership || policy == return_value_policy::automatic)
937 policy = return_value_policy::automatic_reference;
938 return caster_t::cast(&src.get(), policy, parent);
939 }
940 template <typename T> using cast_op_type = std::reference_wrapper<type>;
941 operator std::reference_wrapper<type>() { return subcaster.operator subcaster_cast_op_type&(); }
942 };
943
944 #define PYBIND11_TYPE_CASTER(type, py_name) \
945 protected: \
946 type value; \
947 public: \
948 static constexpr auto name = py_name; \
949 template <typename T_, enable_if_t<std::is_same<type, remove_cv_t<T_>>::value, int> = 0> \
950 static handle cast(T_ *src, return_value_policy policy, handle parent) { \
951 if (!src) return none().release(); \
952 if (policy == return_value_policy::take_ownership) { \
953 auto h = cast(std::move(*src), policy, parent); delete src; return h; \
954 } else { \
955 return cast(*src, policy, parent); \
956 } \
957 } \
958 operator type*() { return &value; } \
959 operator type&() { return value; } \
960 operator type&&() && { return std::move(value); } \
961 template <typename T_> using cast_op_type = pybind11::detail::movable_cast_op_type<T_>
962
963
964 template <typename CharT> using is_std_char_type = any_of<
965 std::is_same<CharT, char>, /* std::string */
966 std::is_same<CharT, char16_t>, /* std::u16string */
967 std::is_same<CharT, char32_t>, /* std::u32string */
968 std::is_same<CharT, wchar_t> /* std::wstring */
969 >;
970
971 template <typename T>
972 struct type_caster<T, enable_if_t<std::is_arithmetic<T>::value && !is_std_char_type<T>::value>> {
973 using _py_type_0 = conditional_t<sizeof(T) <= sizeof(long), long, long long>;
974 using _py_type_1 = conditional_t<std::is_signed<T>::value, _py_type_0, typename std::make_unsigned<_py_type_0>::type>;
975 using py_type = conditional_t<std::is_floating_point<T>::value, double, _py_type_1>;
976 public:
977
978 bool load(handle src, bool convert) {
979 py_type py_value;
980
981 if (!src)
982 return false;
983
984 if (std::is_floating_point<T>::value) {
985 if (convert || PyFloat_Check(src.ptr()))
986 py_value = (py_type) PyFloat_AsDouble(src.ptr());
987 else
988 return false;
989 } else if (PyFloat_Check(src.ptr())) {
990 return false;
991 } else if (std::is_unsigned<py_type>::value) {
992 py_value = as_unsigned<py_type>(src.ptr());
993 } else { // signed integer:
994 py_value = sizeof(T) <= sizeof(long)
995 ? (py_type) PyLong_AsLong(src.ptr())
996 : (py_type) PYBIND11_LONG_AS_LONGLONG(src.ptr());
997 }
998
999 bool py_err = py_value == (py_type) -1 && PyErr_Occurred();
1000
1001 // Protect std::numeric_limits::min/max with parentheses
1002 if (py_err || (std::is_integral<T>::value && sizeof(py_type) != sizeof(T) &&
1003 (py_value < (py_type) (std::numeric_limits<T>::min)() ||
1004 py_value > (py_type) (std::numeric_limits<T>::max)()))) {
1005 bool type_error = py_err && PyErr_ExceptionMatches(
1006 #if PY_VERSION_HEX < 0x03000000 && !defined(PYPY_VERSION)
1007 PyExc_SystemError
1008 #else
1009 PyExc_TypeError
1010 #endif
1011 );
1012 PyErr_Clear();
1013 if (type_error && convert && PyNumber_Check(src.ptr())) {
1014 auto tmp = reinterpret_steal<object>(std::is_floating_point<T>::value
1015 ? PyNumber_Float(src.ptr())
1016 : PyNumber_Long(src.ptr()));
1017 PyErr_Clear();
1018 return load(tmp, false);
1019 }
1020 return false;
1021 }
1022
1023 value = (T) py_value;
1024 return true;
1025 }
1026
1027 template<typename U = T>
1028 static typename std::enable_if<std::is_floating_point<U>::value, handle>::type
1029 cast(U src, return_value_policy /* policy */, handle /* parent */) {
1030 return PyFloat_FromDouble((double) src);
1031 }
1032
1033 template<typename U = T>
1034 static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) <= sizeof(long)), handle>::type
1035 cast(U src, return_value_policy /* policy */, handle /* parent */) {
1036 return PYBIND11_LONG_FROM_SIGNED((long) src);
1037 }
1038
1039 template<typename U = T>
1040 static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) <= sizeof(unsigned long)), handle>::type
1041 cast(U src, return_value_policy /* policy */, handle /* parent */) {
1042 return PYBIND11_LONG_FROM_UNSIGNED((unsigned long) src);
1043 }
1044
1045 template<typename U = T>
1046 static typename std::enable_if<!std::is_floating_point<U>::value && std::is_signed<U>::value && (sizeof(U) > sizeof(long)), handle>::type
1047 cast(U src, return_value_policy /* policy */, handle /* parent */) {
1048 return PyLong_FromLongLong((long long) src);
1049 }
1050
1051 template<typename U = T>
1052 static typename std::enable_if<!std::is_floating_point<U>::value && std::is_unsigned<U>::value && (sizeof(U) > sizeof(unsigned long)), handle>::type
1053 cast(U src, return_value_policy /* policy */, handle /* parent */) {
1054 return PyLong_FromUnsignedLongLong((unsigned long long) src);
1055 }
1056
1057 PYBIND11_TYPE_CASTER(T, _<std::is_integral<T>::value>("int", "float"));
1058 };
1059
1060 template<typename T> struct void_caster {
1061 public:
1062 bool load(handle src, bool) {
1063 if (src && src.is_none())
1064 return true;
1065 return false;
1066 }
1067 static handle cast(T, return_value_policy /* policy */, handle /* parent */) {
1068 return none().inc_ref();
1069 }
1070 PYBIND11_TYPE_CASTER(T, _("None"));
1071 };
1072
1073 template <> class type_caster<void_type> : public void_caster<void_type> {};
1074
1075 template <> class type_caster<void> : public type_caster<void_type> {
1076 public:
1077 using type_caster<void_type>::cast;
1078
1079 bool load(handle h, bool) {
1080 if (!h) {
1081 return false;
1082 } else if (h.is_none()) {
1083 value = nullptr;
1084 return true;
1085 }
1086
1087 /* Check if this is a capsule */
1088 if (isinstance<capsule>(h)) {
1089 value = reinterpret_borrow<capsule>(h);
1090 return true;
1091 }
1092
1093 /* Check if this is a C++ type */
1094 auto &bases = all_type_info((PyTypeObject *) h.get_type().ptr());
1095 if (bases.size() == 1) { // Only allowing loading from a single-value type
1096 value = values_and_holders(reinterpret_cast<instance *>(h.ptr())).begin()->value_ptr();
1097 return true;
1098 }
1099
1100 /* Fail */
1101 return false;
1102 }
1103
1104 static handle cast(const void *ptr, return_value_policy /* policy */, handle /* parent */) {
1105 if (ptr)
1106 return capsule(ptr).release();
1107 else
1108 return none().inc_ref();
1109 }
1110
1111 template <typename T> using cast_op_type = void*&;
1112 operator void *&() { return value; }
1113 static constexpr auto name = _("capsule");
1114 private:
1115 void *value = nullptr;
1116 };
1117
1118 template <> class type_caster<std::nullptr_t> : public void_caster<std::nullptr_t> { };
1119
1120 template <> class type_caster<bool> {
1121 public:
1122 bool load(handle src, bool convert) {
1123 if (!src) return false;
1124 else if (src.ptr() == Py_True) { value = true; return true; }
1125 else if (src.ptr() == Py_False) { value = false; return true; }
1126 else if (convert || !strcmp("numpy.bool_", Py_TYPE(src.ptr())->tp_name)) {
1127 // (allow non-implicit conversion for numpy booleans)
1128
1129 Py_ssize_t res = -1;
1130 if (src.is_none()) {
1131 res = 0; // None is implicitly converted to False
1132 }
1133 #if defined(PYPY_VERSION)
1134 // On PyPy, check that "__bool__" (or "__nonzero__" on Python 2.7) attr exists
1135 else if (hasattr(src, PYBIND11_BOOL_ATTR)) {
1136 res = PyObject_IsTrue(src.ptr());
1137 }
1138 #else
1139 // Alternate approach for CPython: this does the same as the above, but optimized
1140 // using the CPython API so as to avoid an unneeded attribute lookup.
1141 else if (auto tp_as_number = src.ptr()->ob_type->tp_as_number) {
1142 if (PYBIND11_NB_BOOL(tp_as_number)) {
1143 res = (*PYBIND11_NB_BOOL(tp_as_number))(src.ptr());
1144 }
1145 }
1146 #endif
1147 if (res == 0 || res == 1) {
1148 value = (bool) res;
1149 return true;
1150 }
1151 }
1152 return false;
1153 }
1154 static handle cast(bool src, return_value_policy /* policy */, handle /* parent */) {
1155 return handle(src ? Py_True : Py_False).inc_ref();
1156 }
1157 PYBIND11_TYPE_CASTER(bool, _("bool"));
1158 };
1159
1160 // Helper class for UTF-{8,16,32} C++ stl strings:
1161 template <typename StringType, bool IsView = false> struct string_caster {
1162 using CharT = typename StringType::value_type;
1163
1164 // Simplify life by being able to assume standard char sizes (the standard only guarantees
1165 // minimums, but Python requires exact sizes)
1166 static_assert(!std::is_same<CharT, char>::value || sizeof(CharT) == 1, "Unsupported char size != 1");
1167 static_assert(!std::is_same<CharT, char16_t>::value || sizeof(CharT) == 2, "Unsupported char16_t size != 2");
1168 static_assert(!std::is_same<CharT, char32_t>::value || sizeof(CharT) == 4, "Unsupported char32_t size != 4");
1169 // wchar_t can be either 16 bits (Windows) or 32 (everywhere else)
1170 static_assert(!std::is_same<CharT, wchar_t>::value || sizeof(CharT) == 2 || sizeof(CharT) == 4,
1171 "Unsupported wchar_t size != 2/4");
1172 static constexpr size_t UTF_N = 8 * sizeof(CharT);
1173
1174 bool load(handle src, bool) {
1175 #if PY_MAJOR_VERSION < 3
1176 object temp;
1177 #endif
1178 handle load_src = src;
1179 if (!src) {
1180 return false;
1181 } else if (!PyUnicode_Check(load_src.ptr())) {
1182 #if PY_MAJOR_VERSION >= 3
1183 return load_bytes(load_src);
1184 #else
1185 if (sizeof(CharT) == 1) {
1186 return load_bytes(load_src);
1187 }
1188
1189 // The below is a guaranteed failure in Python 3 when PyUnicode_Check returns false
1190 if (!PYBIND11_BYTES_CHECK(load_src.ptr()))
1191 return false;
1192
1193 temp = reinterpret_steal<object>(PyUnicode_FromObject(load_src.ptr()));
1194 if (!temp) { PyErr_Clear(); return false; }
1195 load_src = temp;
1196 #endif
1197 }
1198
1199 object utfNbytes = reinterpret_steal<object>(PyUnicode_AsEncodedString(
1200 load_src.ptr(), UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr));
1201 if (!utfNbytes) { PyErr_Clear(); return false; }
1202
1203 const CharT *buffer = reinterpret_cast<const CharT *>(PYBIND11_BYTES_AS_STRING(utfNbytes.ptr()));
1204 size_t length = (size_t) PYBIND11_BYTES_SIZE(utfNbytes.ptr()) / sizeof(CharT);
1205 if (UTF_N > 8) { buffer++; length--; } // Skip BOM for UTF-16/32
1206 value = StringType(buffer, length);
1207
1208 // If we're loading a string_view we need to keep the encoded Python object alive:
1209 if (IsView)
1210 loader_life_support::add_patient(utfNbytes);
1211
1212 return true;
1213 }
1214
1215 static handle cast(const StringType &src, return_value_policy /* policy */, handle /* parent */) {
1216 const char *buffer = reinterpret_cast<const char *>(src.data());
1217 ssize_t nbytes = ssize_t(src.size() * sizeof(CharT));
1218 handle s = decode_utfN(buffer, nbytes);
1219 if (!s) throw error_already_set();
1220 return s;
1221 }
1222
1223 PYBIND11_TYPE_CASTER(StringType, _(PYBIND11_STRING_NAME));
1224
1225 private:
1226 static handle decode_utfN(const char *buffer, ssize_t nbytes) {
1227 #if !defined(PYPY_VERSION)
1228 return
1229 UTF_N == 8 ? PyUnicode_DecodeUTF8(buffer, nbytes, nullptr) :
1230 UTF_N == 16 ? PyUnicode_DecodeUTF16(buffer, nbytes, nullptr, nullptr) :
1231 PyUnicode_DecodeUTF32(buffer, nbytes, nullptr, nullptr);
1232 #else
1233 // PyPy seems to have multiple problems related to PyUnicode_UTF*: the UTF8 version
1234 // sometimes segfaults for unknown reasons, while the UTF16 and 32 versions require a
1235 // non-const char * arguments, which is also a nuisance, so bypass the whole thing by just
1236 // passing the encoding as a string value, which works properly:
1237 return PyUnicode_Decode(buffer, nbytes, UTF_N == 8 ? "utf-8" : UTF_N == 16 ? "utf-16" : "utf-32", nullptr);
1238 #endif
1239 }
1240
1241 // When loading into a std::string or char*, accept a bytes object as-is (i.e.
1242 // without any encoding/decoding attempt). For other C++ char sizes this is a no-op.
1243 // which supports loading a unicode from a str, doesn't take this path.
1244 template <typename C = CharT>
1245 bool load_bytes(enable_if_t<sizeof(C) == 1, handle> src) {
1246 if (PYBIND11_BYTES_CHECK(src.ptr())) {
1247 // We were passed a Python 3 raw bytes; accept it into a std::string or char*
1248 // without any encoding attempt.
1249 const char *bytes = PYBIND11_BYTES_AS_STRING(src.ptr());
1250 if (bytes) {
1251 value = StringType(bytes, (size_t) PYBIND11_BYTES_SIZE(src.ptr()));
1252 return true;
1253 }
1254 }
1255
1256 return false;
1257 }
1258
1259 template <typename C = CharT>
1260 bool load_bytes(enable_if_t<sizeof(C) != 1, handle>) { return false; }
1261 };
1262
1263 template <typename CharT, class Traits, class Allocator>
1264 struct type_caster<std::basic_string<CharT, Traits, Allocator>, enable_if_t<is_std_char_type<CharT>::value>>
1265 : string_caster<std::basic_string<CharT, Traits, Allocator>> {};
1266
1267 #ifdef PYBIND11_HAS_STRING_VIEW
1268 template <typename CharT, class Traits>
1269 struct type_caster<std::basic_string_view<CharT, Traits>, enable_if_t<is_std_char_type<CharT>::value>>
1270 : string_caster<std::basic_string_view<CharT, Traits>, true> {};
1271 #endif
1272
1273 // Type caster for C-style strings. We basically use a std::string type caster, but also add the
1274 // ability to use None as a nullptr char* (which the string caster doesn't allow).
1275 template <typename CharT> struct type_caster<CharT, enable_if_t<is_std_char_type<CharT>::value>> {
1276 using StringType = std::basic_string<CharT>;
1277 using StringCaster = type_caster<StringType>;
1278 StringCaster str_caster;
1279 bool none = false;
1280 CharT one_char = 0;
1281 public:
1282 bool load(handle src, bool convert) {
1283 if (!src) return false;
1284 if (src.is_none()) {
1285 // Defer accepting None to other overloads (if we aren't in convert mode):
1286 if (!convert) return false;
1287 none = true;
1288 return true;
1289 }
1290 return str_caster.load(src, convert);
1291 }
1292
1293 static handle cast(const CharT *src, return_value_policy policy, handle parent) {
1294 if (src == nullptr) return pybind11::none().inc_ref();
1295 return StringCaster::cast(StringType(src), policy, parent);
1296 }
1297
1298 static handle cast(CharT src, return_value_policy policy, handle parent) {
1299 if (std::is_same<char, CharT>::value) {
1300 handle s = PyUnicode_DecodeLatin1((const char *) &src, 1, nullptr);
1301 if (!s) throw error_already_set();
1302 return s;
1303 }
1304 return StringCaster::cast(StringType(1, src), policy, parent);
1305 }
1306
1307 operator CharT*() { return none ? nullptr : const_cast<CharT *>(static_cast<StringType &>(str_caster).c_str()); }
1308 operator CharT&() {
1309 if (none)
1310 throw value_error("Cannot convert None to a character");
1311
1312 auto &value = static_cast<StringType &>(str_caster);
1313 size_t str_len = value.size();
1314 if (str_len == 0)
1315 throw value_error("Cannot convert empty string to a character");
1316
1317 // If we're in UTF-8 mode, we have two possible failures: one for a unicode character that
1318 // is too high, and one for multiple unicode characters (caught later), so we need to figure
1319 // out how long the first encoded character is in bytes to distinguish between these two
1320 // errors. We also allow want to allow unicode characters U+0080 through U+00FF, as those
1321 // can fit into a single char value.
1322 if (StringCaster::UTF_N == 8 && str_len > 1 && str_len <= 4) {
1323 unsigned char v0 = static_cast<unsigned char>(value[0]);
1324 size_t char0_bytes = !(v0 & 0x80) ? 1 : // low bits only: 0-127
1325 (v0 & 0xE0) == 0xC0 ? 2 : // 0b110xxxxx - start of 2-byte sequence
1326 (v0 & 0xF0) == 0xE0 ? 3 : // 0b1110xxxx - start of 3-byte sequence
1327 4; // 0b11110xxx - start of 4-byte sequence
1328
1329 if (char0_bytes == str_len) {
1330 // If we have a 128-255 value, we can decode it into a single char:
1331 if (char0_bytes == 2 && (v0 & 0xFC) == 0xC0) { // 0x110000xx 0x10xxxxxx
1332 one_char = static_cast<CharT>(((v0 & 3) << 6) + (static_cast<unsigned char>(value[1]) & 0x3F));
1333 return one_char;
1334 }
1335 // Otherwise we have a single character, but it's > U+00FF
1336 throw value_error("Character code point not in range(0x100)");
1337 }
1338 }
1339
1340 // UTF-16 is much easier: we can only have a surrogate pair for values above U+FFFF, thus a
1341 // surrogate pair with total length 2 instantly indicates a range error (but not a "your
1342 // string was too long" error).
1343 else if (StringCaster::UTF_N == 16 && str_len == 2) {
1344 one_char = static_cast<CharT>(value[0]);
1345 if (one_char >= 0xD800 && one_char < 0xE000)
1346 throw value_error("Character code point not in range(0x10000)");
1347 }
1348
1349 if (str_len != 1)
1350 throw value_error("Expected a character, but multi-character string found");
1351
1352 one_char = value[0];
1353 return one_char;
1354 }
1355
1356 static constexpr auto name = _(PYBIND11_STRING_NAME);
1357 template <typename _T> using cast_op_type = pybind11::detail::cast_op_type<_T>;
1358 };
1359
1360 // Base implementation for std::tuple and std::pair
1361 template <template<typename...> class Tuple, typename... Ts> class tuple_caster {
1362 using type = Tuple<Ts...>;
1363 static constexpr auto size = sizeof...(Ts);
1364 using indices = make_index_sequence<size>;
1365 public:
1366
1367 bool load(handle src, bool convert) {
1368 if (!isinstance<sequence>(src))
1369 return false;
1370 const auto seq = reinterpret_borrow<sequence>(src);
1371 if (seq.size() != size)
1372 return false;
1373 return load_impl(seq, convert, indices{});
1374 }
1375
1376 template <typename T>
1377 static handle cast(T &&src, return_value_policy policy, handle parent) {
1378 return cast_impl(std::forward<T>(src), policy, parent, indices{});
1379 }
1380
1381 static constexpr auto name = _("Tuple[") + concat(make_caster<Ts>::name...) + _("]");
1382
1383 template <typename T> using cast_op_type = type;
1384
1385 operator type() & { return implicit_cast(indices{}); }
1386 operator type() && { return std::move(*this).implicit_cast(indices{}); }
1387
1388 protected:
1389 template <size_t... Is>
1390 type implicit_cast(index_sequence<Is...>) & { return type(cast_op<Ts>(std::get<Is>(subcasters))...); }
1391 template <size_t... Is>
1392 type implicit_cast(index_sequence<Is...>) && { return type(cast_op<Ts>(std::move(std::get<Is>(subcasters)))...); }
1393
1394 static constexpr bool load_impl(const sequence &, bool, index_sequence<>) { return true; }
1395
1396 template <size_t... Is>
1397 bool load_impl(const sequence &seq, bool convert, index_sequence<Is...>) {
1398 for (bool r : {std::get<Is>(subcasters).load(seq[Is], convert)...})
1399 if (!r)
1400 return false;
1401 return true;
1402 }
1403
1404 /* Implementation: Convert a C++ tuple into a Python tuple */
1405 template <typename T, size_t... Is>
1406 static handle cast_impl(T &&src, return_value_policy policy, handle parent, index_sequence<Is...>) {
1407 std::array<object, size> entries{{
1408 reinterpret_steal<object>(make_caster<Ts>::cast(std::get<Is>(std::forward<T>(src)), policy, parent))...
1409 }};
1410 for (const auto &entry: entries)
1411 if (!entry)
1412 return handle();
1413 tuple result(size);
1414 int counter = 0;
1415 for (auto & entry: entries)
1416 PyTuple_SET_ITEM(result.ptr(), counter++, entry.release().ptr());
1417 return result.release();
1418 }
1419
1420 Tuple<make_caster<Ts>...> subcasters;
1421 };
1422
1423 template <typename T1, typename T2> class type_caster<std::pair<T1, T2>>
1424 : public tuple_caster<std::pair, T1, T2> {};
1425
1426 template <typename... Ts> class type_caster<std::tuple<Ts...>>
1427 : public tuple_caster<std::tuple, Ts...> {};
1428
1429 /// Helper class which abstracts away certain actions. Users can provide specializations for
1430 /// custom holders, but it's only necessary if the type has a non-standard interface.
1431 template <typename T>
1432 struct holder_helper {
1433 static auto get(const T &p) -> decltype(p.get()) { return p.get(); }
1434 };
1435
1436 /// Type caster for holder types like std::shared_ptr, etc.
1437 template <typename type, typename holder_type>
1438 struct copyable_holder_caster : public type_caster_base<type> {
1439 public:
1440 using base = type_caster_base<type>;
1441 static_assert(std::is_base_of<base, type_caster<type>>::value,
1442 "Holder classes are only supported for custom types");
1443 using base::base;
1444 using base::cast;
1445 using base::typeinfo;
1446 using base::value;
1447
1448 bool load(handle src, bool convert) {
1449 return base::template load_impl<copyable_holder_caster<type, holder_type>>(src, convert);
1450 }
1451
1452 explicit operator type*() { return this->value; }
1453 explicit operator type&() { return *(this->value); }
1454 explicit operator holder_type*() { return std::addressof(holder); }
1455
1456 // Workaround for Intel compiler bug
1457 // see pybind11 issue 94
1458 #if defined(__ICC) || defined(__INTEL_COMPILER)
1459 operator holder_type&() { return holder; }
1460 #else
1461 explicit operator holder_type&() { return holder; }
1462 #endif
1463
1464 static handle cast(const holder_type &src, return_value_policy, handle) {
1465 const auto *ptr = holder_helper<holder_type>::get(src);
1466 return type_caster_base<type>::cast_holder(ptr, &src);
1467 }
1468
1469 protected:
1470 friend class type_caster_generic;
1471 void check_holder_compat() {
1472 if (typeinfo->default_holder)
1473 throw cast_error("Unable to load a custom holder type from a default-holder instance");
1474 }
1475
1476 bool load_value(value_and_holder &&v_h) {
1477 if (v_h.holder_constructed()) {
1478 value = v_h.value_ptr();
1479 holder = v_h.template holder<holder_type>();
1480 return true;
1481 } else {
1482 throw cast_error("Unable to cast from non-held to held instance (T& to Holder<T>) "
1483 #if defined(NDEBUG)
1484 "(compile in debug mode for type information)");
1485 #else
1486 "of type '" + type_id<holder_type>() + "''");
1487 #endif
1488 }
1489 }
1490
1491 template <typename T = holder_type, detail::enable_if_t<!std::is_constructible<T, const T &, type*>::value, int> = 0>
1492 bool try_implicit_casts(handle, bool) { return false; }
1493
1494 template <typename T = holder_type, detail::enable_if_t<std::is_constructible<T, const T &, type*>::value, int> = 0>
1495 bool try_implicit_casts(handle src, bool convert) {
1496 for (auto &cast : typeinfo->implicit_casts) {
1497 copyable_holder_caster sub_caster(*cast.first);
1498 if (sub_caster.load(src, convert)) {
1499 value = cast.second(sub_caster.value);
1500 holder = holder_type(sub_caster.holder, (type *) value);
1501 return true;
1502 }
1503 }
1504 return false;
1505 }
1506
1507 static bool try_direct_conversions(handle) { return false; }
1508
1509
1510 holder_type holder;
1511 };
1512
1513 /// Specialize for the common std::shared_ptr, so users don't need to
1514 template <typename T>
1515 class type_caster<std::shared_ptr<T>> : public copyable_holder_caster<T, std::shared_ptr<T>> { };
1516
1517 template <typename type, typename holder_type>
1518 struct move_only_holder_caster {
1519 static_assert(std::is_base_of<type_caster_base<type>, type_caster<type>>::value,
1520 "Holder classes are only supported for custom types");
1521
1522 static handle cast(holder_type &&src, return_value_policy, handle) {
1523 auto *ptr = holder_helper<holder_type>::get(src);
1524 return type_caster_base<type>::cast_holder(ptr, std::addressof(src));
1525 }
1526 static constexpr auto name = type_caster_base<type>::name;
1527 };
1528
1529 template <typename type, typename deleter>
1530 class type_caster<std::unique_ptr<type, deleter>>
1531 : public move_only_holder_caster<type, std::unique_ptr<type, deleter>> { };
1532
1533 template <typename type, typename holder_type>
1534 using type_caster_holder = conditional_t<is_copy_constructible<holder_type>::value,
1535 copyable_holder_caster<type, holder_type>,
1536 move_only_holder_caster<type, holder_type>>;
1537
1538 template <typename T, bool Value = false> struct always_construct_holder { static constexpr bool value = Value; };
1539
1540 /// Create a specialization for custom holder types (silently ignores std::shared_ptr)
1541 #define PYBIND11_DECLARE_HOLDER_TYPE(type, holder_type, ...) \
1542 namespace pybind11 { namespace detail { \
1543 template <typename type> \
1544 struct always_construct_holder<holder_type> : always_construct_holder<void, ##__VA_ARGS__> { }; \
1545 template <typename type> \
1546 class type_caster<holder_type, enable_if_t<!is_shared_ptr<holder_type>::value>> \
1547 : public type_caster_holder<type, holder_type> { }; \
1548 }}
1549
1550 // PYBIND11_DECLARE_HOLDER_TYPE holder types:
1551 template <typename base, typename holder> struct is_holder_type :
1552 std::is_base_of<detail::type_caster_holder<base, holder>, detail::type_caster<holder>> {};
1553 // Specialization for always-supported unique_ptr holders:
1554 template <typename base, typename deleter> struct is_holder_type<base, std::unique_ptr<base, deleter>> :
1555 std::true_type {};
1556
1557 template <typename T> struct handle_type_name { static constexpr auto name = _<T>(); };
1558 template <> struct handle_type_name<bytes> { static constexpr auto name = _(PYBIND11_BYTES_NAME); };
1559 template <> struct handle_type_name<args> { static constexpr auto name = _("*args"); };
1560 template <> struct handle_type_name<kwargs> { static constexpr auto name = _("**kwargs"); };
1561
1562 template <typename type>
1563 struct pyobject_caster {
1564 template <typename T = type, enable_if_t<std::is_same<T, handle>::value, int> = 0>
1565 bool load(handle src, bool /* convert */) { value = src; return static_cast<bool>(value); }
1566
1567 template <typename T = type, enable_if_t<std::is_base_of<object, T>::value, int> = 0>
1568 bool load(handle src, bool /* convert */) {
1569 if (!isinstance<type>(src))
1570 return false;
1571 value = reinterpret_borrow<type>(src);
1572 return true;
1573 }
1574
1575 static handle cast(const handle &src, return_value_policy /* policy */, handle /* parent */) {
1576 return src.inc_ref();
1577 }
1578 PYBIND11_TYPE_CASTER(type, handle_type_name<type>::name);
1579 };
1580
1581 template <typename T>
1582 class type_caster<T, enable_if_t<is_pyobject<T>::value>> : public pyobject_caster<T> { };
1583
1584 // Our conditions for enabling moving are quite restrictive:
1585 // At compile time:
1586 // - T needs to be a non-const, non-pointer, non-reference type
1587 // - type_caster<T>::operator T&() must exist
1588 // - the type must be move constructible (obviously)
1589 // At run-time:
1590 // - if the type is non-copy-constructible, the object must be the sole owner of the type (i.e. it
1591 // must have ref_count() == 1)h
1592 // If any of the above are not satisfied, we fall back to copying.
1593 template <typename T> using move_is_plain_type = satisfies_none_of<T,
1594 std::is_void, std::is_pointer, std::is_reference, std::is_const
1595 >;
1596 template <typename T, typename SFINAE = void> struct move_always : std::false_type {};
1597 template <typename T> struct move_always<T, enable_if_t<all_of<
1598 move_is_plain_type<T>,
1599 negation<is_copy_constructible<T>>,
1600 std::is_move_constructible<T>,
1601 std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
1602 >::value>> : std::true_type {};
1603 template <typename T, typename SFINAE = void> struct move_if_unreferenced : std::false_type {};
1604 template <typename T> struct move_if_unreferenced<T, enable_if_t<all_of<
1605 move_is_plain_type<T>,
1606 negation<move_always<T>>,
1607 std::is_move_constructible<T>,
1608 std::is_same<decltype(std::declval<make_caster<T>>().operator T&()), T&>
1609 >::value>> : std::true_type {};
1610 template <typename T> using move_never = none_of<move_always<T>, move_if_unreferenced<T>>;
1611
1612 // Detect whether returning a `type` from a cast on type's type_caster is going to result in a
1613 // reference or pointer to a local variable of the type_caster. Basically, only
1614 // non-reference/pointer `type`s and reference/pointers from a type_caster_generic are safe;
1615 // everything else returns a reference/pointer to a local variable.
1616 template <typename type> using cast_is_temporary_value_reference = bool_constant<
1617 (std::is_reference<type>::value || std::is_pointer<type>::value) &&
1618 !std::is_base_of<type_caster_generic, make_caster<type>>::value &&
1619 !std::is_same<intrinsic_t<type>, void>::value
1620 >;
1621
1622 // When a value returned from a C++ function is being cast back to Python, we almost always want to
1623 // force `policy = move`, regardless of the return value policy the function/method was declared
1624 // with.
1625 template <typename Return, typename SFINAE = void> struct return_value_policy_override {
1626 static return_value_policy policy(return_value_policy p) { return p; }
1627 };
1628
1629 template <typename Return> struct return_value_policy_override<Return,
1630 detail::enable_if_t<std::is_base_of<type_caster_generic, make_caster<Return>>::value, void>> {
1631 static return_value_policy policy(return_value_policy p) {
1632 return !std::is_lvalue_reference<Return>::value &&
1633 !std::is_pointer<Return>::value
1634 ? return_value_policy::move : p;
1635 }
1636 };
1637
1638 // Basic python -> C++ casting; throws if casting fails
1639 template <typename T, typename SFINAE> type_caster<T, SFINAE> &load_type(type_caster<T, SFINAE> &conv, const handle &handle) {
1640 if (!conv.load(handle, true)) {
1641 #if defined(NDEBUG)
1642 throw cast_error("Unable to cast Python instance to C++ type (compile in debug mode for details)");
1643 #else
1644 throw cast_error("Unable to cast Python instance of type " +
1645 (std::string) str(handle.get_type()) + " to C++ type '" + type_id<T>() + "'");
1646 #endif
1647 }
1648 return conv;
1649 }
1650 // Wrapper around the above that also constructs and returns a type_caster
1651 template <typename T> make_caster<T> load_type(const handle &handle) {
1652 make_caster<T> conv;
1653 load_type(conv, handle);
1654 return conv;
1655 }
1656
1657 NAMESPACE_END(detail)
1658
1659 // pytype -> C++ type
1660 template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1661 T cast(const handle &handle) {
1662 using namespace detail;
1663 static_assert(!cast_is_temporary_value_reference<T>::value,
1664 "Unable to cast type to reference: value is local to type caster");
1665 return cast_op<T>(load_type<T>(handle));
1666 }
1667
1668 // pytype -> pytype (calls converting constructor)
1669 template <typename T, detail::enable_if_t<detail::is_pyobject<T>::value, int> = 0>
1670 T cast(const handle &handle) { return T(reinterpret_borrow<object>(handle)); }
1671
1672 // C++ type -> py::object
1673 template <typename T, detail::enable_if_t<!detail::is_pyobject<T>::value, int> = 0>
1674 object cast(const T &value, return_value_policy policy = return_value_policy::automatic_reference,
1675 handle parent = handle()) {
1676 if (policy == return_value_policy::automatic)
1677 policy = std::is_pointer<T>::value ? return_value_policy::take_ownership : return_value_policy::copy;
1678 else if (policy == return_value_policy::automatic_reference)
1679 policy = std::is_pointer<T>::value ? return_value_policy::reference : return_value_policy::copy;
1680 return reinterpret_steal<object>(detail::make_caster<T>::cast(value, policy, parent));
1681 }
1682
1683 template <typename T> T handle::cast() const { return pybind11::cast<T>(*this); }
1684 template <> inline void handle::cast() const { return; }
1685
1686 template <typename T>
1687 detail::enable_if_t<!detail::move_never<T>::value, T> move(object &&obj) {
1688 if (obj.ref_count() > 1)
1689 #if defined(NDEBUG)
1690 throw cast_error("Unable to cast Python instance to C++ rvalue: instance has multiple references"
1691 " (compile in debug mode for details)");
1692 #else
1693 throw cast_error("Unable to move from Python " + (std::string) str(obj.get_type()) +
1694 " instance to C++ " + type_id<T>() + " instance: instance has multiple references");
1695 #endif
1696
1697 // Move into a temporary and return that, because the reference may be a local value of `conv`
1698 T ret = std::move(detail::load_type<T>(obj).operator T&());
1699 return ret;
1700 }
1701
1702 // Calling cast() on an rvalue calls pybind::cast with the object rvalue, which does:
1703 // - If we have to move (because T has no copy constructor), do it. This will fail if the moved
1704 // object has multiple references, but trying to copy will fail to compile.
1705 // - If both movable and copyable, check ref count: if 1, move; otherwise copy
1706 // - Otherwise (not movable), copy.
1707 template <typename T> detail::enable_if_t<detail::move_always<T>::value, T> cast(object &&object) {
1708 return move<T>(std::move(object));
1709 }
1710 template <typename T> detail::enable_if_t<detail::move_if_unreferenced<T>::value, T> cast(object &&object) {
1711 if (object.ref_count() > 1)
1712 return cast<T>(object);
1713 else
1714 return move<T>(std::move(object));
1715 }
1716 template <typename T> detail::enable_if_t<detail::move_never<T>::value, T> cast(object &&object) {
1717 return cast<T>(object);
1718 }
1719
1720 template <typename T> T object::cast() const & { return pybind11::cast<T>(*this); }
1721 template <typename T> T object::cast() && { return pybind11::cast<T>(std::move(*this)); }
1722 template <> inline void object::cast() const & { return; }
1723 template <> inline void object::cast() && { return; }
1724
1725 NAMESPACE_BEGIN(detail)
1726
1727 // Declared in pytypes.h:
1728 template <typename T, enable_if_t<!is_pyobject<T>::value, int>>
1729 object object_or_cast(T &&o) { return pybind11::cast(std::forward<T>(o)); }
1730
1731 struct overload_unused {}; // Placeholder type for the unneeded (and dead code) static variable in the OVERLOAD_INT macro
1732 template <typename ret_type> using overload_caster_t = conditional_t<
1733 cast_is_temporary_value_reference<ret_type>::value, make_caster<ret_type>, overload_unused>;
1734
1735 // Trampoline use: for reference/pointer types to value-converted values, we do a value cast, then
1736 // store the result in the given variable. For other types, this is a no-op.
1737 template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&o, make_caster<T> &caster) {
1738 return cast_op<T>(load_type(caster, o));
1739 }
1740 template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_ref(object &&, overload_unused &) {
1741 pybind11_fail("Internal error: cast_ref fallback invoked"); }
1742
1743 // Trampoline use: Having a pybind11::cast with an invalid reference type is going to static_assert, even
1744 // though if it's in dead code, so we provide a "trampoline" to pybind11::cast that only does anything in
1745 // cases where pybind11::cast is valid.
1746 template <typename T> enable_if_t<!cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&o) {
1747 return pybind11::cast<T>(std::move(o)); }
1748 template <typename T> enable_if_t<cast_is_temporary_value_reference<T>::value, T> cast_safe(object &&) {
1749 pybind11_fail("Internal error: cast_safe fallback invoked"); }
1750 template <> inline void cast_safe<void>(object &&) {}
1751
1752 NAMESPACE_END(detail)
1753
1754 template <return_value_policy policy = return_value_policy::automatic_reference>
1755 tuple make_tuple() { return tuple(0); }
1756
1757 template <return_value_policy policy = return_value_policy::automatic_reference,
1758 typename... Args> tuple make_tuple(Args&&... args_) {
1759 constexpr size_t size = sizeof...(Args);
1760 std::array<object, size> args {
1761 { reinterpret_steal<object>(detail::make_caster<Args>::cast(
1762 std::forward<Args>(args_), policy, nullptr))... }
1763 };
1764 for (size_t i = 0; i < args.size(); i++) {
1765 if (!args[i]) {
1766 #if defined(NDEBUG)
1767 throw cast_error("make_tuple(): unable to convert arguments to Python object (compile in debug mode for details)");
1768 #else
1769 std::array<std::string, size> argtypes { {type_id<Args>()...} };
1770 throw cast_error("make_tuple(): unable to convert argument of type '" +
1771 argtypes[i] + "' to Python object");
1772 #endif
1773 }
1774 }
1775 tuple result(size);
1776 int counter = 0;
1777 for (auto &arg_value : args)
1778 PyTuple_SET_ITEM(result.ptr(), counter++, arg_value.release().ptr());
1779 return result;
1780 }
1781
1782 /// \ingroup annotations
1783 /// Annotation for arguments
1784 struct arg {
1785 /// Constructs an argument with the name of the argument; if null or omitted, this is a positional argument.
1786 constexpr explicit arg(const char *name = nullptr) : name(name), flag_noconvert(false), flag_none(true) { }
1787 /// Assign a value to this argument
1788 template <typename T> arg_v operator=(T &&value) const;
1789 /// Indicate that the type should not be converted in the type caster
1790 arg &noconvert(bool flag = true) { flag_noconvert = flag; return *this; }
1791 /// Indicates that the argument should/shouldn't allow None (e.g. for nullable pointer args)
1792 arg &none(bool flag = true) { flag_none = flag; return *this; }
1793
1794 const char *name; ///< If non-null, this is a named kwargs argument
1795 bool flag_noconvert : 1; ///< If set, do not allow conversion (requires a supporting type caster!)
1796 bool flag_none : 1; ///< If set (the default), allow None to be passed to this argument
1797 };
1798
1799 /// \ingroup annotations
1800 /// Annotation for arguments with values
1801 struct arg_v : arg {
1802 private:
1803 template <typename T>
1804 arg_v(arg &&base, T &&x, const char *descr = nullptr)
1805 : arg(base),
1806 value(reinterpret_steal<object>(
1807 detail::make_caster<T>::cast(x, return_value_policy::automatic, {})
1808 )),
1809 descr(descr)
1810 #if !defined(NDEBUG)
1811 , type(type_id<T>())
1812 #endif
1813 { }
1814
1815 public:
1816 /// Direct construction with name, default, and description
1817 template <typename T>
1818 arg_v(const char *name, T &&x, const char *descr = nullptr)
1819 : arg_v(arg(name), std::forward<T>(x), descr) { }
1820
1821 /// Called internally when invoking `py::arg("a") = value`
1822 template <typename T>
1823 arg_v(const arg &base, T &&x, const char *descr = nullptr)
1824 : arg_v(arg(base), std::forward<T>(x), descr) { }
1825
1826 /// Same as `arg::noconvert()`, but returns *this as arg_v&, not arg&
1827 arg_v &noconvert(bool flag = true) { arg::noconvert(flag); return *this; }
1828
1829 /// Same as `arg::nonone()`, but returns *this as arg_v&, not arg&
1830 arg_v &none(bool flag = true) { arg::none(flag); return *this; }
1831
1832 /// The default value
1833 object value;
1834 /// The (optional) description of the default value
1835 const char *descr;
1836 #if !defined(NDEBUG)
1837 /// The C++ type name of the default value (only available when compiled in debug mode)
1838 std::string type;
1839 #endif
1840 };
1841
1842 template <typename T>
1843 arg_v arg::operator=(T &&value) const { return {std::move(*this), std::forward<T>(value)}; }
1844
1845 /// Alias for backward compatibility -- to be removed in version 2.0
1846 template <typename /*unused*/> using arg_t = arg_v;
1847
1848 inline namespace literals {
1849 /** \rst
1850 String literal version of `arg`
1851 \endrst */
1852 constexpr arg operator"" _a(const char *name, size_t) { return arg(name); }
1853 }
1854
1855 NAMESPACE_BEGIN(detail)
1856
1857 // forward declaration (definition in attr.h)
1858 struct function_record;
1859
1860 /// Internal data associated with a single function call
1861 struct function_call {
1862 function_call(const function_record &f, handle p); // Implementation in attr.h
1863
1864 /// The function data:
1865 const function_record &func;
1866
1867 /// Arguments passed to the function:
1868 std::vector<handle> args;
1869
1870 /// The `convert` value the arguments should be loaded with
1871 std::vector<bool> args_convert;
1872
1873 /// Extra references for the optional `py::args` and/or `py::kwargs` arguments (which, if
1874 /// present, are also in `args` but without a reference).
1875 object args_ref, kwargs_ref;
1876
1877 /// The parent, if any
1878 handle parent;
1879
1880 /// If this is a call to an initializer, this argument contains `self`
1881 handle init_self;
1882 };
1883
1884
1885 /// Helper class which loads arguments for C++ functions called from Python
1886 template <typename... Args>
1887 class argument_loader {
1888 using indices = make_index_sequence<sizeof...(Args)>;
1889
1890 template <typename Arg> using argument_is_args = std::is_same<intrinsic_t<Arg>, args>;
1891 template <typename Arg> using argument_is_kwargs = std::is_same<intrinsic_t<Arg>, kwargs>;
1892 // Get args/kwargs argument positions relative to the end of the argument list:
1893 static constexpr auto args_pos = constexpr_first<argument_is_args, Args...>() - (int) sizeof...(Args),
1894 kwargs_pos = constexpr_first<argument_is_kwargs, Args...>() - (int) sizeof...(Args);
1895
1896 static constexpr bool args_kwargs_are_last = kwargs_pos >= - 1 && args_pos >= kwargs_pos - 1;
1897
1898 static_assert(args_kwargs_are_last, "py::args/py::kwargs are only permitted as the last argument(s) of a function");
1899
1900 public:
1901 static constexpr bool has_kwargs = kwargs_pos < 0;
1902 static constexpr bool has_args = args_pos < 0;
1903
1904 static constexpr auto arg_names = concat(type_descr(make_caster<Args>::name)...);
1905
1906 bool load_args(function_call &call) {
1907 return load_impl_sequence(call, indices{});
1908 }
1909
1910 template <typename Return, typename Guard, typename Func>
1911 enable_if_t<!std::is_void<Return>::value, Return> call(Func &&f) && {
1912 return std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
1913 }
1914
1915 template <typename Return, typename Guard, typename Func>
1916 enable_if_t<std::is_void<Return>::value, void_type> call(Func &&f) && {
1917 std::move(*this).template call_impl<Return>(std::forward<Func>(f), indices{}, Guard{});
1918 return void_type();
1919 }
1920
1921 private:
1922
1923 static bool load_impl_sequence(function_call &, index_sequence<>) { return true; }
1924
1925 template <size_t... Is>
1926 bool load_impl_sequence(function_call &call, index_sequence<Is...>) {
1927 for (bool r : {std::get<Is>(argcasters).load(call.args[Is], call.args_convert[Is])...})
1928 if (!r)
1929 return false;
1930 return true;
1931 }
1932
1933 template <typename Return, typename Func, size_t... Is, typename Guard>
1934 Return call_impl(Func &&f, index_sequence<Is...>, Guard &&) {
1935 return std::forward<Func>(f)(cast_op<Args>(std::move(std::get<Is>(argcasters)))...);
1936 }
1937
1938 std::tuple<make_caster<Args>...> argcasters;
1939 };
1940
1941 /// Helper class which collects only positional arguments for a Python function call.
1942 /// A fancier version below can collect any argument, but this one is optimal for simple calls.
1943 template <return_value_policy policy>
1944 class simple_collector {
1945 public:
1946 template <typename... Ts>
1947 explicit simple_collector(Ts &&...values)
1948 : m_args(pybind11::make_tuple<policy>(std::forward<Ts>(values)...)) { }
1949
1950 const tuple &args() const & { return m_args; }
1951 dict kwargs() const { return {}; }
1952
1953 tuple args() && { return std::move(m_args); }
1954
1955 /// Call a Python function and pass the collected arguments
1956 object call(PyObject *ptr) const {
1957 PyObject *result = PyObject_CallObject(ptr, m_args.ptr());
1958 if (!result)
1959 throw error_already_set();
1960 return reinterpret_steal<object>(result);
1961 }
1962
1963 private:
1964 tuple m_args;
1965 };
1966
1967 /// Helper class which collects positional, keyword, * and ** arguments for a Python function call
1968 template <return_value_policy policy>
1969 class unpacking_collector {
1970 public:
1971 template <typename... Ts>
1972 explicit unpacking_collector(Ts &&...values) {
1973 // Tuples aren't (easily) resizable so a list is needed for collection,
1974 // but the actual function call strictly requires a tuple.
1975 auto args_list = list();
1976 int _[] = { 0, (process(args_list, std::forward<Ts>(values)), 0)... };
1977 ignore_unused(_);
1978
1979 m_args = std::move(args_list);
1980 }
1981
1982 const tuple &args() const & { return m_args; }
1983 const dict &kwargs() const & { return m_kwargs; }
1984
1985 tuple args() && { return std::move(m_args); }
1986 dict kwargs() && { return std::move(m_kwargs); }
1987
1988 /// Call a Python function and pass the collected arguments
1989 object call(PyObject *ptr) const {
1990 PyObject *result = PyObject_Call(ptr, m_args.ptr(), m_kwargs.ptr());
1991 if (!result)
1992 throw error_already_set();
1993 return reinterpret_steal<object>(result);
1994 }
1995
1996 private:
1997 template <typename T>
1998 void process(list &args_list, T &&x) {
1999 auto o = reinterpret_steal<object>(detail::make_caster<T>::cast(std::forward<T>(x), policy, {}));
2000 if (!o) {
2001 #if defined(NDEBUG)
2002 argument_cast_error();
2003 #else
2004 argument_cast_error(std::to_string(args_list.size()), type_id<T>());
2005 #endif
2006 }
2007 args_list.append(o);
2008 }
2009
2010 void process(list &args_list, detail::args_proxy ap) {
2011 for (const auto &a : ap)
2012 args_list.append(a);
2013 }
2014
2015 void process(list &/*args_list*/, arg_v a) {
2016 if (!a.name)
2017 #if defined(NDEBUG)
2018 nameless_argument_error();
2019 #else
2020 nameless_argument_error(a.type);
2021 #endif
2022
2023 if (m_kwargs.contains(a.name)) {
2024 #if defined(NDEBUG)
2025 multiple_values_error();
2026 #else
2027 multiple_values_error(a.name);
2028 #endif
2029 }
2030 if (!a.value) {
2031 #if defined(NDEBUG)
2032 argument_cast_error();
2033 #else
2034 argument_cast_error(a.name, a.type);
2035 #endif
2036 }
2037 m_kwargs[a.name] = a.value;
2038 }
2039
2040 void process(list &/*args_list*/, detail::kwargs_proxy kp) {
2041 if (!kp)
2042 return;
2043 for (const auto &k : reinterpret_borrow<dict>(kp)) {
2044 if (m_kwargs.contains(k.first)) {
2045 #if defined(NDEBUG)
2046 multiple_values_error();
2047 #else
2048 multiple_values_error(str(k.first));
2049 #endif
2050 }
2051 m_kwargs[k.first] = k.second;
2052 }
2053 }
2054
2055 [[noreturn]] static void nameless_argument_error() {
2056 throw type_error("Got kwargs without a name; only named arguments "
2057 "may be passed via py::arg() to a python function call. "
2058 "(compile in debug mode for details)");
2059 }
2060 [[noreturn]] static void nameless_argument_error(std::string type) {
2061 throw type_error("Got kwargs without a name of type '" + type + "'; only named "
2062 "arguments may be passed via py::arg() to a python function call. ");
2063 }
2064 [[noreturn]] static void multiple_values_error() {
2065 throw type_error("Got multiple values for keyword argument "
2066 "(compile in debug mode for details)");
2067 }
2068
2069 [[noreturn]] static void multiple_values_error(std::string name) {
2070 throw type_error("Got multiple values for keyword argument '" + name + "'");
2071 }
2072
2073 [[noreturn]] static void argument_cast_error() {
2074 throw cast_error("Unable to convert call argument to Python object "
2075 "(compile in debug mode for details)");
2076 }
2077
2078 [[noreturn]] static void argument_cast_error(std::string name, std::string type) {
2079 throw cast_error("Unable to convert call argument '" + name
2080 + "' of type '" + type + "' to Python object");
2081 }
2082
2083 private:
2084 tuple m_args;
2085 dict m_kwargs;
2086 };
2087
2088 /// Collect only positional arguments for a Python function call
2089 template <return_value_policy policy, typename... Args,
2090 typename = enable_if_t<all_of<is_positional<Args>...>::value>>
2091 simple_collector<policy> collect_arguments(Args &&...args) {
2092 return simple_collector<policy>(std::forward<Args>(args)...);
2093 }
2094
2095 /// Collect all arguments, including keywords and unpacking (only instantiated when needed)
2096 template <return_value_policy policy, typename... Args,
2097 typename = enable_if_t<!all_of<is_positional<Args>...>::value>>
2098 unpacking_collector<policy> collect_arguments(Args &&...args) {
2099 // Following argument order rules for generalized unpacking according to PEP 448
2100 static_assert(
2101 constexpr_last<is_positional, Args...>() < constexpr_first<is_keyword_or_ds, Args...>()
2102 && constexpr_last<is_s_unpacking, Args...>() < constexpr_first<is_ds_unpacking, Args...>(),
2103 "Invalid function call: positional args must precede keywords and ** unpacking; "
2104 "* unpacking must precede ** unpacking"
2105 );
2106 return unpacking_collector<policy>(std::forward<Args>(args)...);
2107 }
2108
2109 template <typename Derived>
2110 template <return_value_policy policy, typename... Args>
2111 object object_api<Derived>::operator()(Args &&...args) const {
2112 return detail::collect_arguments<policy>(std::forward<Args>(args)...).call(derived().ptr());
2113 }
2114
2115 template <typename Derived>
2116 template <return_value_policy policy, typename... Args>
2117 object object_api<Derived>::call(Args &&...args) const {
2118 return operator()<policy>(std::forward<Args>(args)...);
2119 }
2120
2121 NAMESPACE_END(detail)
2122
2123 #define PYBIND11_MAKE_OPAQUE(...) \
2124 namespace pybind11 { namespace detail { \
2125 template<> class type_caster<__VA_ARGS__> : public type_caster_base<__VA_ARGS__> { }; \
2126 }}
2127
2128 /// Lets you pass a type containing a `,` through a macro parameter without needing a separate
2129 /// typedef, e.g.: `PYBIND11_OVERLOAD(PYBIND11_TYPE(ReturnType<A, B>), PYBIND11_TYPE(Parent<C, D>), f, arg)`
2130 #define PYBIND11_TYPE(...) __VA_ARGS__
2131
2132 NAMESPACE_END(PYBIND11_NAMESPACE)
2133