1\chapter{SUSY2: Super Symmetry}
2\label{SUSY2}
3\typeout{{SUSY2: Super Symmetry}}
4
5{\footnotesize
6\begin{center}
7Ziemowit Popowicz \\
8Institute of Theoretical Physics, University of Wroclaw\\
9pl. M. Borna 9 50-205 Wroclaw, Poland \\
10e-mail: ziemek@ift.uni.wroc.pl
11\end{center}
12}
13\ttindex{SUSY2}
14
15
16This package deals with supersymmetric functions and with algebra
17of supersymmetric operators in the extended N=2 as well as in the
18nonextended N=1 supersymmetry. It allows us
19to make the realization of SuSy algebra of differential operators,
20compute the gradients of given SuSy Hamiltonians and to obtain
21SuSy version of soliton equations using the SuSy Lax approach. There
22are also many additional procedures encountered in the SuSy soliton
23approach, as for example: conjugation of a given SuSy operator, computation
24of general form of SuSy Hamiltonians (up to SuSy-divergence equivalence),
25checking of the validity of the Jacobi identity for some SuSy
26Hamiltonian operators.
27
28To load the package, type \quad {\tt load susy2;} \\
29\\
30For full explanation and further examples, please refer to the
31detailed documentation and the susy2.tst which comes with this package.
32
33\section{Operators}
34
35\subsection{Operators for constructing Objects}
36
37The superfunctions are represented in this package by \f{BOS}(f,n,m) for superbosons
38and \f{FER}(f,n,m) for superfermions. The first index denotes the name of the given
39superobject, the second denotes the value of SuSy derivatives, and the last gives the
40value of usual derivative. \\
41In addition to the definitions of the superfunctions, also the inverse and the exponential
42of superbosons can be defined (where the inverse is defined as \f{BOS}(f,n,m,-1)
43with the property {\it bos(f,n,m,-1)*bos(f,n,m,1)=1}). The exponential of the superboson
44function is \f{AXP}(\f{BOS}(f,0,0)). \\
45The operator \f{FUN} and \f{GRAS} denote the classical and the Grassmann function. \\
46Three different realizations of supersymmetric derivatives are implemented. To select
47traditional realization declare \f{LET TRAD}. In order to select chiral or chiral1 algebra
48declare \f{LET CHIRAL} or \f{LET CHIRAL1}. For usual differentiation the operator
49\f{D}(1) stands for right and \f{D}(2) for left differentiation. SuSy derivatives are
50denoted as {\it der} and {\it del}. \f{DER} and \f{DEL} are one component argument operations
51and represent the left and right operators. The action of these operators on the
52superfunctions depends on the choice of the supersymmetry algebra.
53
54\flushleft
55{\small\begin{center}
56\begin{tabular}{ l l l l l l}
57 \f{BOS}(f,n,m)\ttindex{BOS} & \f{BOS}(f,n,m,k)\ttindex{BOS} &
58 \f{FER}(f,n,m)\ttindex{FER} & \f{AXP}(f)\ttindex{AXP} &
59 \f{FUN}(f,n)\ttindex{FUN} & \f{FUN}(f,n,m)\ttindex{FUN} \cr
60 \f{GRAS}(f,n)\ttindex{GRAS} & \f{AXX}(f)\ttindex{AXX}  &
61 \f{D}(1)\ttindex{D} & \f{D}(2)\ttindex{D} &
62 \f{D}(3)\ttindex{D}  & \f{D}(-1)\ttindex{D} \cr
63 \f{D}(-2)\ttindex{D}   & \f{D}(-3)\ttindex{D} &
64 \f{D}(-4)\ttindex{D} & \f{DR}(-n)\ttindex{DR} &
65 \f{DER}(1)\ttindex{DER} & \f{DER}(2)\ttindex{DER} \cr
66 \f{DEL}(1)\ttindex{DEL} & \f{DEL}(2)\ttindex{DEL}
67\end{tabular}
68\end{center} }
69\vspace{1cm}
70
71{\bf Example}:
72\begin{verbatim}
731: load susy2;
74
752: bos(f,0,2,-2)*axp(fer(k,1,2))*del(1);  %first susy derivative
76
772*fer(f,1,2)*bos(f,0,2,-3)*axp(fer(k,1,2))
78
79 - bos(k,0,3)*bos(f,0,2,-2)*axp(fer(k,1,2))
80
81 + del(1)*bos(f,0,2,-2)*axp(fer(k,1,2))
82
833: sub(del=der,ws);
84
85bos(f,0,2,-2)*axp(fer(k,1,2))*der(1)
86
87\end{verbatim}
88
89\subsection{Commands}
90
91There are plenty of operators on superfunction objects. Some of them are introduced
92here briefly.
93\begin{itemize}
94\item By using the operators \f{FPART}, \f{BPART}, \f{BFPART} and \f{BF\_PART}
95      it is possible to compute the coordinates of the arbitrary SuSy expressions.
96\item With \f{W\_COMB}, \f{FCOMB} and \f{PSE\_ELE} there are three operators to be able to
97      construct different possible combinations of superfunctions and
98      super-pseudo-differential elements with the given conformal dimensions .
99\item The three operators \f{S\_PART}, \f{D\_PART} and \f{SD\_PART} are implemented to
100      obtain the components of the (pseudo)-SuSy element.
101\item \f{RZUT} is used to obtain the projection onto the invariant subspace (with respect
102      to commutator) of algebra of pseudo-SuSy-differential algebra.
103\item To obtain the list of the same combinations of some superfunctions and (SuSy)
104      derivatives from some given operator-valued expression, the operators
105      \f{LYST}, \f{LYST1} and \f{LYST2} are constructed.
106\end{itemize}
107
108
109\begin{center}
110\begin{tabular}{ l l}
111 \f{FPART}(expression)\ttindex{FPART} &
112 \f{BPART}(expression)\ttindex{BPART} \cr
113 \f{BF\_PART}(expression,n)\ttindex{BF\_PART} &
114 \f{B\_PART}(expression,n)\ttindex{B\_PART} \cr
115 \f{PR}(n,expression)\ttindex{PR} &
116 \f{PG}(n,expression)\ttindex{PG} \cr
117 \f{W\_COMB}(\{\{f,n,x\},...\},m,z,y)\ttindex{W\_COMB} &
118 \f{FCOMB}(\{\{f,n,x\},...\},m,z,y)\ttindex{FCOMB} \cr
119 \f{PSE\_ELE}(n,\{\{f,n\},...\},z)\ttindex{PSE\_ELE} \cr
120 \f{S\_PART}(expression,n)\ttindex{S\_PART} &
121 \f{D\_PART}(expression,n)\ttindex{D\_PART} \cr
122 \f{SD\_PART}(expression,n,m)\ttindex{SD\_PART} &
123 \f{CP}(expression)\ttindex{CP} \cr
124 \f{RZUT}(expression,n)\ttindex{RZUT} &
125 \f{LYST}(expression)\ttindex{LYST} \cr
126 \f{LYST1}(expression)\ttindex{LYST1} &
127 \f{LYST2}(expression)\ttindex{LYST2} \cr
128 \f{CHAN}(expression)\ttindex{CHAN} &
129 \f{ODWA}(expression)\ttindex{ODWA} \cr
130 \f{GRA}(expression,f)\ttindex{GRA} &
131 \f{DYW}(expression,f)\ttindex{DYW} \cr
132 \f{WAR}(expression,f)\ttindex{WAR} &
133 \f{DOT\_HAM}(equations,expression)\ttindex{DOT\_HAM} \cr
134 \f{N\_GAT}(operator,list)\ttindex{N\_GAT} &
135 \f{FJACOB}(operator,list)\ttindex{FJACOB} \cr
136 \f{JACOB}(operator,list,\{$\alpha,\beta,\gamma$\})\ttindex{JACOB} &
137 \f{MACIERZ}(expression,x,y)\ttindex{MACIERZ} \cr
138 \f{S\_INT}(number,expression,list)\ttindex{S\_INT}
139\end{tabular}
140\end{center}
141\vspace{1cm}
142
143{\bf Example}:
144\begin{verbatim}
1454: xxx:=fer(f,2,3);
146
147xxx := fer(f,2,3)
148
1495: fpart(xxx);  % all components
150
151                - fun(f0,4) + 2*fun(f1,3)      gras(ff2,4)
152{gras(ff2,3), ----------------------------,0, -------------}
153                           2                        2
1546: bpart(xxx);  % bosonic sector
155
156     - fun(f0,4) + 2*fun(f1,3)
157{0,----------------------------,0,0}
158                2
159
1609: b_part(xxx,1); %the given component in the bosonic sector
161
162  - fun(f0,4) + 2*fun(f1,3)
163----------------------------
164             2
165\end{verbatim}
166
167\section{Options}
168The are several options defined in this package. Please note that they are
169activated by typing \f{let $<$option$>$}. See also above. \\
170The \f{TRAD}, \f{CHIRAL} and \f{CHIRAL1} select the different realizations of the
171supersymmetric derivatives. By default traditional algebra is selected. \\
172If the command  {\tt LET INVERSE} is used, then three indices {\it bos} objects are
173transformed onto four indices objects.
174\begin{center}
175\begin{tabular}{ l l l l l l }
176\f{TRAD}\ttindex{TRAD} & \f{CHIRAL}\ttindex{CHIRAL} &
177\f{CHIRAL1}\ttindex{CHIRAL1} & \f{INVERSE}\ttindex{INVERSE} &
178\f{DRR}\ttindex{DRR} & \f{NODRR}\ttindex{NODRR}
179\end{tabular}
180\end{center}
181\vspace{1cm}
182
183{\bf Example}:
184\begin{verbatim}
18510: let inverse;
186
18711: bos(f,0,3)**3*bos(k,3,1)**40*bos(f,0,3,-2);
188
189bos(k,3,1,40)*bos(f,0,3,1);
190
19112: clearrules inverse;
192
19313: xxx:=fer(f,1,2)*bos(k,0,2,-2);
194
195xxx := fer(f,1,2)*bos(k,0,2,-2)
196
19714: pr(1,xxx); % first susy derivative
198
199- 2*fer(k,1,2)*fer(f,1,2)*bos(k,0,2,-3) + bos(k,0,2,-2)*bos(f,0,3)
200
20115: pr(2,xxx); %second susy derivative
202
203- 2*fer(k,2,2)*fer(f,1,2)*bos(k,0,2,-3) - bos(k,0,2,-2)*bos(f,3,2)
204
20516: clearrules trad;
206
20717: let chiral; % changing to chiral algebra
208
20918: pr(1,xxx);
210
211- 2*fer(k,1,2)*fer(f,1,2)*bos(k,0,2,-3)
212\end{verbatim}
213
214