1      SUBROUTINE PDGGQRF( N, M, P, A, IA, JA, DESCA, TAUA, B, IB, JB,
2     $                    DESCB, TAUB, WORK, LWORK, INFO )
3*
4*  -- ScaLAPACK routine (version 1.7) --
5*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6*     and University of California, Berkeley.
7*     May 1, 1997
8*
9*     .. Scalar Arguments ..
10      INTEGER            IA, IB, INFO, JA, JB, LWORK, M, N, P
11*     ..
12*     .. Array Arguments ..
13      INTEGER            DESCA( * ), DESCB( * )
14      DOUBLE PRECISION   A( * ), B( * ), TAUA( * ), TAUB( * ), WORK( * )
15*     ..
16*
17*  Purpose
18*  =======
19*
20*  PDGGQRF computes a generalized QR factorization of
21*  an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and
22*  an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1):
23*
24*              sub( A ) = Q*R,        sub( B ) = Q*T*Z,
25*
26*  where Q is an N-by-N orthogonal matrix, Z is a P-by-P orthogonal
27*  matrix, and R and T assume one of the forms:
28*
29*  if N >= M,  R = ( R11 ) M  ,   or if N < M,  R = ( R11  R12 ) N,
30*                  (  0  ) N-M                         N   M-N
31*                     M
32*
33*  where R11 is upper triangular, and
34*
35*  if N <= P,  T = ( 0  T12 ) N,   or if N > P,  T = ( T11 ) N-P,
36*                   P-N  N                           ( T21 ) P
37*                                                       P
38*
39*  where T12 or T21 is upper triangular.
40*
41*  In particular, if sub( B ) is square and nonsingular, the GQR
42*  factorization of sub( A ) and sub( B ) implicitly gives the QR
43*  factorization of inv( sub( B ) )* sub( A ):
44*
45*               inv( sub( B ) )*sub( A )= Z'*(inv(T)*R)
46*
47*  where inv( sub( B ) ) denotes the inverse of the matrix sub( B ),
48*  and Z' denotes the transpose of matrix Z.
49*
50*  Notes
51*  =====
52*
53*  Each global data object is described by an associated description
54*  vector.  This vector stores the information required to establish
55*  the mapping between an object element and its corresponding process
56*  and memory location.
57*
58*  Let A be a generic term for any 2D block cyclicly distributed array.
59*  Such a global array has an associated description vector DESCA.
60*  In the following comments, the character _ should be read as
61*  "of the global array".
62*
63*  NOTATION        STORED IN      EXPLANATION
64*  --------------- -------------- --------------------------------------
65*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
66*                                 DTYPE_A = 1.
67*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
68*                                 the BLACS process grid A is distribu-
69*                                 ted over. The context itself is glo-
70*                                 bal, but the handle (the integer
71*                                 value) may vary.
72*  M_A    (global) DESCA( M_ )    The number of rows in the global
73*                                 array A.
74*  N_A    (global) DESCA( N_ )    The number of columns in the global
75*                                 array A.
76*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
77*                                 the rows of the array.
78*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
79*                                 the columns of the array.
80*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
81*                                 row of the array A is distributed.
82*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
83*                                 first column of the array A is
84*                                 distributed.
85*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
86*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
87*
88*  Let K be the number of rows or columns of a distributed matrix,
89*  and assume that its process grid has dimension p x q.
90*  LOCr( K ) denotes the number of elements of K that a process
91*  would receive if K were distributed over the p processes of its
92*  process column.
93*  Similarly, LOCc( K ) denotes the number of elements of K that a
94*  process would receive if K were distributed over the q processes of
95*  its process row.
96*  The values of LOCr() and LOCc() may be determined via a call to the
97*  ScaLAPACK tool function, NUMROC:
98*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
99*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
100*  An upper bound for these quantities may be computed by:
101*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
102*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
103*
104*  Arguments
105*  =========
106*
107*  N       (global input) INTEGER
108*          The number of rows to be operated on i.e the number of rows
109*          of the distributed submatrices sub( A ) and sub( B ). N >= 0.
110*
111*  M       (global input) INTEGER
112*          The number of columns to be operated on i.e the number of
113*          columns of the distributed submatrix sub( A ).  M >= 0.
114*
115*  P       (global input) INTEGER
116*          The number of columns to be operated on i.e the number of
117*          columns of the distributed submatrix sub( B ).  P >= 0.
118*
119*  A       (local input/local output) DOUBLE PRECISION pointer into the
120*          local memory to an array of dimension (LLD_A, LOCc(JA+M-1)).
121*          On entry, the local pieces of the N-by-M distributed matrix
122*          sub( A ) which is to be factored.  On exit, the elements on
123*          and above the diagonal of sub( A ) contain the min(N,M) by M
124*          upper trapezoidal matrix R (R is upper triangular if N >= M);
125*          the elements below the diagonal, with the array TAUA,
126*          represent the orthogonal matrix Q as a product of min(N,M)
127*          elementary reflectors (see Further Details).
128*
129*  IA      (global input) INTEGER
130*          The row index in the global array A indicating the first
131*          row of sub( A ).
132*
133*  JA      (global input) INTEGER
134*          The column index in the global array A indicating the
135*          first column of sub( A ).
136*
137*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
138*          The array descriptor for the distributed matrix A.
139*
140*  TAUA    (local output) DOUBLE PRECISION array, dimension
141*          LOCc(JA+MIN(N,M)-1). This array contains the scalar factors
142*          TAUA of the elementary reflectors which represent the
143*          orthogonal matrix Q. TAUA is tied to the distributed matrix
144*          A. (see Further Details).
145*
146*  B       (local input/local output) DOUBLE PRECISION pointer into the
147*          local memory to an array of dimension (LLD_B, LOCc(JB+P-1)).
148*          On entry, the local pieces of the N-by-P distributed matrix
149*          sub( B ) which is to be factored. On exit, if N <= P, the
150*          upper triangle of B(IB:IB+N-1,JB+P-N:JB+P-1) contains the
151*          N by N upper triangular matrix T; if N > P, the elements on
152*          and above the (N-P)-th subdiagonal contain the N by P upper
153*          trapezoidal matrix T; the remaining elements, with the array
154*          TAUB, represent the orthogonal matrix Z as a product of
155*          elementary reflectors (see Further Details).
156*
157*  IB      (global input) INTEGER
158*          The row index in the global array B indicating the first
159*          row of sub( B ).
160*
161*  JB      (global input) INTEGER
162*          The column index in the global array B indicating the
163*          first column of sub( B ).
164*
165*  DESCB   (global and local input) INTEGER array of dimension DLEN_.
166*          The array descriptor for the distributed matrix B.
167*
168*  TAUB    (local output) DOUBLE PRECISION array, dimension LOCr(IB+N-1)
169*          This array contains the scalar factors of the elementary
170*          reflectors which represent the orthogonal unitary matrix Z.
171*          TAUB is tied to the distributed matrix B (see Further
172*          Details).
173*
174*  WORK    (local workspace/local output) DOUBLE PRECISION array,
175*                                                  dimension (LWORK)
176*          On exit, WORK(1) returns the minimal and optimal LWORK.
177*
178*  LWORK   (local or global input) INTEGER
179*          The dimension of the array WORK.
180*          LWORK is local input and must be at least
181*          LWORK >= MAX( NB_A * ( NpA0 + MqA0 + NB_A ),
182*                        MAX( (NB_A*(NB_A-1))/2, (PqB0 + NpB0)*NB_A ) +
183*                             NB_A * NB_A,
184*                        MB_B * ( NpB0 + PqB0 + MB_B ) ), where
185*
186*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
187*          IAROW  = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
188*          IACOL  = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
189*          NpA0   = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW ),
190*          MqA0   = NUMROC( M+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
191*
192*          IROFFB = MOD( IB-1, MB_B ), ICOFFB = MOD( JB-1, NB_B ),
193*          IBROW  = INDXG2P( IB, MB_B, MYROW, RSRC_B, NPROW ),
194*          IBCOL  = INDXG2P( JB, NB_B, MYCOL, CSRC_B, NPCOL ),
195*          NpB0   = NUMROC( N+IROFFB, MB_B, MYROW, IBROW, NPROW ),
196*          PqB0   = NUMROC( P+ICOFFB, NB_B, MYCOL, IBCOL, NPCOL ),
197*
198*          and NUMROC, INDXG2P are ScaLAPACK tool functions;
199*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
200*          the subroutine BLACS_GRIDINFO.
201*
202*          If LWORK = -1, then LWORK is global input and a workspace
203*          query is assumed; the routine only calculates the minimum
204*          and optimal size for all work arrays. Each of these
205*          values is returned in the first entry of the corresponding
206*          work array, and no error message is issued by PXERBLA.
207*
208*  INFO    (global output) INTEGER
209*          = 0:  successful exit
210*          < 0:  If the i-th argument is an array and the j-entry had
211*                an illegal value, then INFO = -(i*100+j), if the i-th
212*                argument is a scalar and had an illegal value, then
213*                INFO = -i.
214*
215*  Further Details
216*  ===============
217*
218*  The matrix Q is represented as a product of elementary reflectors
219*
220*     Q = H(ja) H(ja+1) . . . H(ja+k-1), where k = min(n,m).
221*
222*  Each H(i) has the form
223*
224*     H(i) = I - taua * v * v'
225*
226*  where taua is a real scalar, and v is a real vector with
227*  v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
228*  A(ia+i:ia+n-1,ja+i-1), and taua in TAUA(ja+i-1).
229*  To form Q explicitly, use ScaLAPACK subroutine PDORGQR.
230*  To use Q to update another matrix, use ScaLAPACK subroutine PDORMQR.
231*
232*  The matrix Z is represented as a product of elementary reflectors
233*
234*     Z = H(ib) H(ib+1) . . . H(ib+k-1), where k = min(n,p).
235*
236*  Each H(i) has the form
237*
238*     H(i) = I - taub * v * v'
239*
240*  where taub is a real scalar, and v is a real vector with
241*  v(p-k+i+1:p) = 0 and v(p-k+i) = 1; v(1:p-k+i-1) is stored on exit in
242*  B(ib+n-k+i-1,jb:jb+p-k+i-2), and taub in TAUB(ib+n-k+i-1).
243*  To form Z explicitly, use ScaLAPACK subroutine PDORGRQ.
244*  To use Z to update another matrix, use ScaLAPACK subroutine PDORMRQ.
245*
246*  Alignment requirements
247*  ======================
248*
249*  The distributed submatrices sub( A ) and sub( B ) must verify some
250*  alignment properties, namely the following expression should be true:
251*
252*  ( MB_A.EQ.MB_B .AND. IROFFA.EQ.IROFFB .AND. IAROW.EQ.IBROW )
253*
254*  =====================================================================
255*
256*     .. Parameters ..
257      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
258     $                   LLD_, MB_, M_, NB_, N_, RSRC_
259      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
260     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
261     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
262*     ..
263*     .. Local Scalars ..
264      LOGICAL            LQUERY
265      INTEGER            IACOL, IAROW, IBCOL, IBROW, ICOFFA, ICOFFB,
266     $                   ICTXT, IROFFA, IROFFB, LWMIN, MQA0, MYCOL,
267     $                   MYROW, NPA0, NPB0, NPCOL, NPROW, PQB0
268*     ..
269*     .. External Subroutines ..
270      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHK2MAT, PDGEQRF,
271     $                   PDGERQF, PDORMQR, PXERBLA
272*     ..
273*     .. Local Arrays ..
274      INTEGER            IDUM1( 1 ), IDUM2( 1 )
275*     ..
276*     .. External Functions ..
277      INTEGER            INDXG2P, NUMROC
278      EXTERNAL           INDXG2P, NUMROC
279*     ..
280*     .. Intrinsic Functions ..
281      INTRINSIC          DBLE, INT, MAX, MIN, MOD
282*     ..
283*     .. Executable Statements ..
284*
285*     Get grid parameters
286*
287      ICTXT = DESCA( CTXT_ )
288      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
289*
290*     Test the input parameters
291*
292      INFO = 0
293      IF( NPROW.EQ.-1 ) THEN
294         INFO = -707
295      ELSE
296         CALL CHK1MAT( N, 1, M, 2, IA, JA, DESCA, 7, INFO )
297         CALL CHK1MAT( N, 1, P, 3, IB, JB, DESCB, 12, INFO )
298         IF( INFO.EQ.0 ) THEN
299            IROFFA = MOD( IA-1, DESCA( MB_ ) )
300            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
301            IROFFB = MOD( IB-1, DESCB( MB_ ) )
302            ICOFFB = MOD( JB-1, DESCB( NB_ ) )
303            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
304     $                       NPROW )
305            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
306     $                       NPCOL )
307            IBROW = INDXG2P( IB, DESCB( MB_ ), MYROW, DESCB( RSRC_ ),
308     $                       NPROW )
309            IBCOL = INDXG2P( JB, DESCB( NB_ ), MYCOL, DESCB( CSRC_ ),
310     $                       NPCOL )
311            NPA0 = NUMROC( N+IROFFA, DESCA( MB_ ), MYROW, IAROW, NPROW )
312            MQA0 = NUMROC( M+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
313            NPB0 = NUMROC( N+IROFFB, DESCB( MB_ ), MYROW, IBROW, NPROW )
314            PQB0 = NUMROC( P+ICOFFB, DESCB( NB_ ), MYCOL, IBCOL, NPCOL )
315            LWMIN = MAX( DESCA( NB_ ) * ( NPA0 + MQA0 + DESCA( NB_ ) ),
316     $        MAX( MAX( ( DESCA( NB_ )*( DESCA( NB_ ) - 1 ) ) / 2,
317     $         ( PQB0 + NPB0 ) * DESCA( NB_ ) ) +
318     $           DESCA( NB_ ) * DESCA( NB_ ),
319     $         DESCB( MB_ ) * ( NPB0 + PQB0 + DESCB( MB_ ) ) ) )
320*
321            WORK( 1 ) = DBLE( LWMIN )
322            LQUERY = ( LWORK.EQ.-1 )
323            IF( IAROW.NE.IBROW .OR. IROFFA.NE.IROFFB ) THEN
324               INFO = -10
325            ELSE IF( DESCA( MB_ ).NE.DESCB( MB_ ) ) THEN
326               INFO = -1203
327            ELSE IF( ICTXT.NE.DESCB( CTXT_ ) ) THEN
328               INFO = -1207
329            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
330               INFO = -15
331            END IF
332         END IF
333         IF( LQUERY ) THEN
334            IDUM1( 1 ) = -1
335         ELSE
336            IDUM1( 1 ) = 1
337         END IF
338         IDUM2( 1 ) = 15
339         CALL PCHK2MAT( N, 1, M, 2, IA, JA, DESCA, 7, N, 1, P, 3, IB,
340     $                  JB, DESCB, 12, 1, IDUM1, IDUM2, INFO )
341      END IF
342*
343      IF( INFO.NE.0 ) THEN
344         CALL PXERBLA( ICTXT, 'PDGGQRF', -INFO )
345         RETURN
346      ELSE IF( LQUERY ) THEN
347         RETURN
348      END IF
349*
350*     QR factorization of N-by-M matrix sub( A ): sub( A ) = Q*R
351*
352      CALL PDGEQRF( N, M, A, IA, JA, DESCA, TAUA, WORK, LWORK, INFO )
353      LWMIN = INT( WORK( 1 ) )
354*
355*     Update sub( B ) := Q'*sub( B ).
356*
357      CALL PDORMQR( 'Left', 'Transpose', N, P, MIN( N, M ), A, IA, JA,
358     $              DESCA, TAUA, B, IB, JB, DESCB, WORK, LWORK, INFO )
359      LWMIN = MIN( LWMIN, INT( WORK( 1 ) ) )
360*
361*     RQ factorization of N-by-P matrix sub( B ): sub( B ) = T*Z.
362*
363      CALL PDGERQF( N, P, B, IB, JB, DESCB, TAUB, WORK, LWORK, INFO )
364      WORK( 1 ) = DBLE( MAX( LWMIN, INT( WORK( 1 ) ) ) )
365*
366      RETURN
367*
368*     End of PDGGQRF
369*
370      END
371