1      SUBROUTINE PDORGRQ( M, N, K, A, IA, JA, DESCA, TAU, WORK, LWORK,
2     $                    INFO )
3*
4*  -- ScaLAPACK routine (version 1.7) --
5*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6*     and University of California, Berkeley.
7*     May 25, 2001
8*
9*     .. Scalar Arguments ..
10      INTEGER            IA, INFO, JA, K, LWORK, M, N
11*     ..
12*     .. Array Arguments ..
13      INTEGER            DESCA( * )
14      DOUBLE PRECISION   A( * ), TAU( * ), WORK( * )
15*     ..
16*
17*  Purpose
18*  =======
19*
20*  PDORGRQ generates an M-by-N real distributed matrix Q denoting
21*  A(IA:IA+M-1,JA:JA+N-1) with orthonormal rows, which is defined as the
22*  last M rows of a product of K elementary reflectors of order N
23*
24*        Q  =  H(1) H(2) . . . H(k)
25*
26*  as returned by PDGERQF.
27*
28*  Notes
29*  =====
30*
31*  Each global data object is described by an associated description
32*  vector.  This vector stores the information required to establish
33*  the mapping between an object element and its corresponding process
34*  and memory location.
35*
36*  Let A be a generic term for any 2D block cyclicly distributed array.
37*  Such a global array has an associated description vector DESCA.
38*  In the following comments, the character _ should be read as
39*  "of the global array".
40*
41*  NOTATION        STORED IN      EXPLANATION
42*  --------------- -------------- --------------------------------------
43*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
44*                                 DTYPE_A = 1.
45*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
46*                                 the BLACS process grid A is distribu-
47*                                 ted over. The context itself is glo-
48*                                 bal, but the handle (the integer
49*                                 value) may vary.
50*  M_A    (global) DESCA( M_ )    The number of rows in the global
51*                                 array A.
52*  N_A    (global) DESCA( N_ )    The number of columns in the global
53*                                 array A.
54*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
55*                                 the rows of the array.
56*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
57*                                 the columns of the array.
58*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
59*                                 row of the array A is distributed.
60*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
61*                                 first column of the array A is
62*                                 distributed.
63*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
64*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
65*
66*  Let K be the number of rows or columns of a distributed matrix,
67*  and assume that its process grid has dimension p x q.
68*  LOCr( K ) denotes the number of elements of K that a process
69*  would receive if K were distributed over the p processes of its
70*  process column.
71*  Similarly, LOCc( K ) denotes the number of elements of K that a
72*  process would receive if K were distributed over the q processes of
73*  its process row.
74*  The values of LOCr() and LOCc() may be determined via a call to the
75*  ScaLAPACK tool function, NUMROC:
76*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
77*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
78*  An upper bound for these quantities may be computed by:
79*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
80*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
81*
82*  Arguments
83*  =========
84*
85*  M       (global input) INTEGER
86*          The number of rows to be operated on i.e the number of rows
87*          of the distributed submatrix Q. M >= 0.
88*
89*  N       (global input) INTEGER
90*          The number of columns to be operated on i.e the number of
91*          columns of the distributed submatrix Q.
92*          N >= M >= 0.
93*
94*  K       (global input) INTEGER
95*          The number of elementary reflectors whose product defines the
96*          matrix Q. M >= K >= 0.
97*
98*  A       (local input/local output) DOUBLE PRECISION pointer into the
99*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
100*          On entry, the i-th row must contain the vector which defines
101*          the elementary reflector H(i), IA+M-K <= i <= IA+M-1, as
102*          returned by PDGERQF in the K rows of its distributed
103*          matrix argument A(IA+M-K:IA+M-1,JA:*). On exit, this array
104*          contains the local pieces of the M-by-N distributed matrix Q.
105*
106*  IA      (global input) INTEGER
107*          The row index in the global array A indicating the first
108*          row of sub( A ).
109*
110*  JA      (global input) INTEGER
111*          The column index in the global array A indicating the
112*          first column of sub( A ).
113*
114*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
115*          The array descriptor for the distributed matrix A.
116*
117*  TAU     (local input) DOUBLE PRECISION array, dimension LOCr(IA+M-1)
118*          This array contains the scalar factors TAU(i) of the
119*          elementary reflectors H(i) as returned by PDGERQF.
120*          TAU is tied to the distributed matrix A.
121*
122*  WORK    (local workspace/local output) DOUBLE PRECISION array,
123*                                                  dimension (LWORK)
124*          On exit, WORK(1) returns the minimal and optimal LWORK.
125*
126*  LWORK   (local or global input) INTEGER
127*          The dimension of the array WORK.
128*          LWORK is local input and must be at least
129*          LWORK >= MB_A * ( MpA0 + NqA0 + MB_A ), where
130*
131*          IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
132*          IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
133*          IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
134*          MpA0 = NUMROC( M+IROFFA, MB_A, MYROW, IAROW, NPROW ),
135*          NqA0 = NUMROC( N+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
136*
137*          INDXG2P and NUMROC are ScaLAPACK tool functions;
138*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
139*          the subroutine BLACS_GRIDINFO.
140*
141*          If LWORK = -1, then LWORK is global input and a workspace
142*          query is assumed; the routine only calculates the minimum
143*          and optimal size for all work arrays. Each of these
144*          values is returned in the first entry of the corresponding
145*          work array, and no error message is issued by PXERBLA.
146*
147*
148*  INFO    (global output) INTEGER
149*          = 0:  successful exit
150*          < 0:  If the i-th argument is an array and the j-entry had
151*                an illegal value, then INFO = -(i*100+j), if the i-th
152*                argument is a scalar and had an illegal value, then
153*                INFO = -i.
154*
155*  =====================================================================
156*
157*     .. Parameters ..
158      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
159     $                   LLD_, MB_, M_, NB_, N_, RSRC_
160      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
161     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
162     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
163      DOUBLE PRECISION   ZERO
164      PARAMETER          ( ZERO = 0.0D+0 )
165*     ..
166*     .. Local Scalars ..
167      LOGICAL            LQUERY
168      CHARACTER          COLBTOP, ROWBTOP
169      INTEGER            I, IACOL, IAROW, IB, ICTXT, IINFO, IN, IPW,
170     $                   LWMIN, MPA0, MYCOL, MYROW, NPCOL, NPROW, NQA0
171*     ..
172*     .. Local Arrays ..
173      INTEGER            IDUM1( 2 ), IDUM2( 2 )
174*     ..
175*     .. External Subroutines ..
176      EXTERNAL           BLACS_GRIDINFO, CHK1MAT, PCHK1MAT, PDLARFB,
177     $                   PDLARFT, PDLASET, PDORGR2, PB_TOPGET,
178     $                   PB_TOPSET, PXERBLA
179*     ..
180*     .. External Functions ..
181      INTEGER            ICEIL, INDXG2P, NUMROC
182      EXTERNAL           ICEIL, INDXG2P, NUMROC
183*     ..
184*     .. Intrinsic Functions ..
185      INTRINSIC          DBLE, MIN, MOD
186*     ..
187*     .. Executable Statements ..
188*
189*     Get grid parameters
190*
191      ICTXT = DESCA( CTXT_ )
192      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
193*
194*     Test the input parameters
195*
196      INFO = 0
197      IF( NPROW.EQ.-1 ) THEN
198         INFO = -(700+CTXT_)
199      ELSE
200         CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 7, INFO )
201         IF( INFO.EQ.0 ) THEN
202            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
203     $                       NPROW )
204            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
205     $                       NPCOL )
206            MPA0 = NUMROC( M+MOD( IA-1, DESCA( MB_ ) ), DESCA( MB_ ),
207     $                     MYROW, IAROW, NPROW )
208            NQA0 = NUMROC( N+MOD( JA-1, DESCA( NB_ ) ), DESCA( NB_ ),
209     $                     MYCOL, IACOL, NPCOL )
210            LWMIN = DESCA( MB_ ) * ( MPA0 + NQA0 + DESCA( MB_ ) )
211*
212            WORK( 1 ) = DBLE( LWMIN )
213            LQUERY = ( LWORK.EQ.-1 )
214            IF( N.LT.M ) THEN
215               INFO = -2
216            ELSE IF( K.LT.0 .OR. K.GT.M ) THEN
217               INFO = -3
218            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
219               INFO = -10
220            END IF
221         END IF
222         IDUM1( 1 ) = K
223         IDUM2( 1 ) = 3
224         IF( LWORK.EQ.-1 ) THEN
225            IDUM1( 2 ) = -1
226         ELSE
227            IDUM1( 2 ) = 1
228         END IF
229         IDUM2( 2 ) = 10
230         CALL PCHK1MAT( M, 1, N, 2, IA, JA, DESCA, 7, 2, IDUM1, IDUM2,
231     $                  INFO )
232      END IF
233*
234      IF( INFO.NE.0 ) THEN
235         CALL PXERBLA( ICTXT, 'PDORGRQ', -INFO )
236         RETURN
237      ELSE IF( LQUERY ) THEN
238         RETURN
239      END IF
240*
241*     Quick return if possible
242*
243      IF( M.LE.0 )
244     $   RETURN
245*
246      IPW = DESCA( MB_ )*DESCA( MB_ ) + 1
247      IN = MIN( ICEIL( IA+M-K, DESCA( MB_ ) )*DESCA( MB_ ), IA+M-1 )
248      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
249      CALL PB_TOPGET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
250      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ' ' )
251      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', 'I-ring' )
252*
253*     Set A(ia:in,ja+n-m+in-ia+1:ja-n+1) to zero.
254*
255      CALL PDLASET( 'All', IN-IA+1, M-IN+IA-1, ZERO, ZERO, A, IA,
256     $              JA+N-M+IN-IA+1, DESCA )
257*
258*     Use unblocked code for the first or only block.
259*
260      CALL PDORGR2( IN-IA+1, N-M+IN-IA+1, IN-IA-M+K+1, A, IA, JA, DESCA,
261     $              TAU, WORK, LWORK, IINFO )
262*
263*     Use blocked code
264*
265      DO 10 I = IN+1, IA+M-1, DESCA( MB_ )
266         IB = MIN( IA+M-I, DESCA( MB_ ) )
267*
268*        Form the triangular factor of the block reflector
269*        H = H(i+ib-1) . . . H(i+1) H(i)
270*
271         CALL PDLARFT( 'Backward', 'Rowwise', N-M+I+IB-IA, IB, A, I, JA,
272     $                 DESCA, TAU, WORK, WORK( IPW ) )
273*
274*        Apply H' to A(ia:i-1,ja:ja+n-m+i+ib-ia-1) from the right
275*
276         CALL PDLARFB( 'Right', 'Transpose', 'Backward', 'Rowwise',
277     $                 I-IA, N-M+I+IB-IA, IB, A, I, JA, DESCA, WORK, A,
278     $                 IA, JA, DESCA, WORK( IPW ) )
279*
280*        Apply H' to columns ja:ja+n-m+i+ib-ia-1 of current block
281*
282         CALL PDORGR2( IB, N-M+I+IB-IA, IB, A, I, JA, DESCA, TAU, WORK,
283     $                 LWORK, IINFO )
284*
285*        Set rows i:i+ib-1,ja+n-m+i+ib-ia:ja+n-1 of current block to
286*        zero
287*
288         CALL PDLASET( 'All', IB, M-I-IB+IA, ZERO, ZERO, A, I,
289     $                 JA+N-M+I+IB-IA, DESCA )
290*
291   10 CONTINUE
292*
293      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Rowwise', ROWBTOP )
294      CALL PB_TOPSET( ICTXT, 'Broadcast', 'Columnwise', COLBTOP )
295*
296      WORK( 1 ) = DBLE( LWMIN )
297*
298      RETURN
299*
300*     End of PDORGRQ
301*
302      END
303