1      SUBROUTINE PSGEBD2( M, N, A, IA, JA, DESCA, D, E, TAUQ, TAUP,
2     $                    WORK, LWORK, INFO )
3*
4*  -- ScaLAPACK auxiliary routine (version 1.7) --
5*     University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6*     and University of California, Berkeley.
7*     May 1, 1997
8*
9*     .. Scalar Arguments ..
10      INTEGER            IA, INFO, JA, LWORK, M, N
11*     ..
12*     .. Array Arguments ..
13      INTEGER            DESCA( * )
14      REAL               A( * ), D( * ), E( * ), TAUP( * ), TAUQ( * ),
15     $                   WORK( * )
16*     ..
17*
18*  Purpose
19*  =======
20*
21*  PSGEBD2 reduces a real general M-by-N distributed matrix
22*  sub( A ) = A(IA:IA+M-1,JA:JA+N-1) to upper or lower bidiagonal
23*  form B by an orthogonal transformation: Q' * sub( A ) * P = B.
24*
25*  If M >= N, B is upper bidiagonal; if M < N, B is lower bidiagonal.
26*
27*  Notes
28*  =====
29*
30*  Each global data object is described by an associated description
31*  vector.  This vector stores the information required to establish
32*  the mapping between an object element and its corresponding process
33*  and memory location.
34*
35*  Let A be a generic term for any 2D block cyclicly distributed array.
36*  Such a global array has an associated description vector DESCA.
37*  In the following comments, the character _ should be read as
38*  "of the global array".
39*
40*  NOTATION        STORED IN      EXPLANATION
41*  --------------- -------------- --------------------------------------
42*  DTYPE_A(global) DESCA( DTYPE_ )The descriptor type.  In this case,
43*                                 DTYPE_A = 1.
44*  CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
45*                                 the BLACS process grid A is distribu-
46*                                 ted over. The context itself is glo-
47*                                 bal, but the handle (the integer
48*                                 value) may vary.
49*  M_A    (global) DESCA( M_ )    The number of rows in the global
50*                                 array A.
51*  N_A    (global) DESCA( N_ )    The number of columns in the global
52*                                 array A.
53*  MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
54*                                 the rows of the array.
55*  NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
56*                                 the columns of the array.
57*  RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
58*                                 row of the array A is distributed.
59*  CSRC_A (global) DESCA( CSRC_ ) The process column over which the
60*                                 first column of the array A is
61*                                 distributed.
62*  LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
63*                                 array.  LLD_A >= MAX(1,LOCr(M_A)).
64*
65*  Let K be the number of rows or columns of a distributed matrix,
66*  and assume that its process grid has dimension p x q.
67*  LOCr( K ) denotes the number of elements of K that a process
68*  would receive if K were distributed over the p processes of its
69*  process column.
70*  Similarly, LOCc( K ) denotes the number of elements of K that a
71*  process would receive if K were distributed over the q processes of
72*  its process row.
73*  The values of LOCr() and LOCc() may be determined via a call to the
74*  ScaLAPACK tool function, NUMROC:
75*          LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
76*          LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
77*  An upper bound for these quantities may be computed by:
78*          LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
79*          LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
80*
81*  Arguments
82*  =========
83*
84*  M       (global input) INTEGER
85*          The number of rows to be operated on, i.e. the number of rows
86*          of the distributed submatrix sub( A ). M >= 0.
87*
88*  N       (global input) INTEGER
89*          The number of columns to be operated on, i.e. the number of
90*          columns of the distributed submatrix sub( A ). N >= 0.
91*
92*  A       (local input/local output) REAL pointer into the
93*          local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
94*          On entry, this array contains the local pieces of the
95*          general distributed matrix sub( A ). On exit, if M >= N,
96*          the diagonal and the first superdiagonal of sub( A ) are
97*          overwritten with the upper bidiagonal matrix B; the elements
98*          below the diagonal, with the array TAUQ, represent the
99*          orthogonal matrix Q as a product of elementary reflectors,
100*          and the elements above the first superdiagonal, with the
101*          array TAUP, represent the orthogonal matrix P as a product
102*          of elementary reflectors. If M < N, the diagonal and the
103*          first subdiagonal are overwritten with the lower bidiagonal
104*          matrix B; the elements below the first subdiagonal, with the
105*          array TAUQ, represent the orthogonal matrix Q as a product of
106*          elementary reflectors, and the elements above the diagonal,
107*          with the array TAUP, represent the orthogonal matrix P as a
108*          product of elementary reflectors. See Further Details.
109*
110*  IA      (global input) INTEGER
111*          The row index in the global array A indicating the first
112*          row of sub( A ).
113*
114*  JA      (global input) INTEGER
115*          The column index in the global array A indicating the
116*          first column of sub( A ).
117*
118*  DESCA   (global and local input) INTEGER array of dimension DLEN_.
119*          The array descriptor for the distributed matrix A.
120*
121*  D       (local output) REAL array, dimension
122*          LOCc(JA+MIN(M,N)-1) if M >= N; LOCr(IA+MIN(M,N)-1) otherwise.
123*          The distributed diagonal elements of the bidiagonal matrix
124*          B: D(i) = A(i,i). D is tied to the distributed matrix A.
125*
126*  E       (local output) REAL array, dimension
127*          LOCr(IA+MIN(M,N)-1) if M >= N; LOCc(JA+MIN(M,N)-2) otherwise.
128*          The distributed off-diagonal elements of the bidiagonal
129*          distributed matrix B:
130*          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
131*          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
132*          E is tied to the distributed matrix A.
133*
134*  TAUQ    (local output) REAL array dimension
135*          LOCc(JA+MIN(M,N)-1). The scalar factors of the elementary
136*          reflectors which represent the orthogonal matrix Q. TAUQ
137*          is tied to the distributed matrix A. See Further Details.
138*
139*  TAUP    (local output) REAL array, dimension
140*          LOCr(IA+MIN(M,N)-1). The scalar factors of the elementary
141*          reflectors which represent the orthogonal matrix P. TAUP
142*          is tied to the distributed matrix A. See Further Details.
143*
144*  WORK    (local workspace/local output) REAL array,
145*                                                  dimension (LWORK)
146*          On exit, WORK(1) returns the minimal and optimal LWORK.
147*
148*  LWORK   (local or global input) INTEGER
149*          The dimension of the array WORK.
150*          LWORK is local input and must be at least
151*          LWORK >= MAX( MpA0, NqA0 )
152*
153*          where NB = MB_A = NB_A, IROFFA = MOD( IA-1, NB )
154*          IAROW = INDXG2P( IA, NB, MYROW, RSRC_A, NPROW ),
155*          IACOL = INDXG2P( JA, NB, MYCOL, CSRC_A, NPCOL ),
156*          MpA0 = NUMROC( M+IROFFA, NB, MYROW, IAROW, NPROW ),
157*          NqA0 = NUMROC( N+IROFFA, NB, MYCOL, IACOL, NPCOL ).
158*
159*          INDXG2P and NUMROC are ScaLAPACK tool functions;
160*          MYROW, MYCOL, NPROW and NPCOL can be determined by calling
161*          the subroutine BLACS_GRIDINFO.
162*
163*          If LWORK = -1, then LWORK is global input and a workspace
164*          query is assumed; the routine only calculates the minimum
165*          and optimal size for all work arrays. Each of these
166*          values is returned in the first entry of the corresponding
167*          work array, and no error message is issued by PXERBLA.
168*
169*  INFO    (local output) INTEGER
170*          = 0:  successful exit
171*          < 0:  If the i-th argument is an array and the j-entry had
172*                an illegal value, then INFO = -(i*100+j), if the i-th
173*                argument is a scalar and had an illegal value, then
174*                INFO = -i.
175*
176*  Further Details
177*  ===============
178*
179*  The matrices Q and P are represented as products of elementary
180*  reflectors:
181*
182*  If m >= n,
183*
184*     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
185*
186*  Each H(i) and G(i) has the form:
187*
188*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
189*
190*  where tauq and taup are real scalars, and v and u are real vectors;
191*  v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
192*  A(ia+i:ia+m-1,ja+i-1);
193*  u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
194*  A(ia+i-1,ja+i+1:ja+n-1);
195*  tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
196*
197*  If m < n,
198*
199*     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
200*
201*  Each H(i) and G(i) has the form:
202*
203*     H(i) = I - tauq * v * v'  and G(i) = I - taup * u * u'
204*
205*  where tauq and taup are real scalars, and v and u are real vectors;
206*  v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
207*  A(ia+i+1:ia+m-1,ja+i-1);
208*  u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
209*  A(ia+i-1,ja+i:ja+n-1);
210*  tauq is stored in TAUQ(ja+i-1) and taup in TAUP(ia+i-1).
211*
212*  The contents of sub( A ) on exit are illustrated by the following
213*  examples:
214*
215*  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
216*
217*    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
218*    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
219*    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
220*    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
221*    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
222*    (  v1  v2  v3  v4  v5 )
223*
224*  where d and e denote diagonal and off-diagonal elements of B, vi
225*  denotes an element of the vector defining H(i), and ui an element of
226*  the vector defining G(i).
227*
228*  Alignment requirements
229*  ======================
230*
231*  The distributed submatrix sub( A ) must verify some alignment proper-
232*  ties, namely the following expressions should be true:
233*                  ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA )
234*
235*  =====================================================================
236*
237*     .. Parameters ..
238      INTEGER            BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
239     $                   LLD_, MB_, M_, NB_, N_, RSRC_
240      PARAMETER          ( BLOCK_CYCLIC_2D = 1, DLEN_ = 9, DTYPE_ = 1,
241     $                     CTXT_ = 2, M_ = 3, N_ = 4, MB_ = 5, NB_ = 6,
242     $                     RSRC_ = 7, CSRC_ = 8, LLD_ = 9 )
243      REAL               ONE, ZERO
244      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
245*     ..
246*     .. Local Scalars ..
247      LOGICAL            LQUERY
248      INTEGER            I, IACOL, IAROW, ICOFFA, ICTXT, II, IROFFA, J,
249     $                   JJ, K, LWMIN, MPA0, MYCOL, MYROW, NPCOL, NPROW,
250     $                   NQA0
251      REAL               ALPHA
252*     ..
253*     .. Local Arrays ..
254      INTEGER            DESCD( DLEN_ ), DESCE( DLEN_ )
255*     ..
256*     .. External Subroutines ..
257      EXTERNAL           BLACS_ABORT, BLACS_GRIDINFO, CHK1MAT, DESCSET,
258     $                   INFOG2L, PSLARF, PSLARFG, PSELSET,
259     $                   PXERBLA, SGEBR2D, SGEBS2D, SLARFG
260*     ..
261*     .. External Functions ..
262      INTEGER            INDXG2P, NUMROC
263      EXTERNAL           INDXG2P, NUMROC
264*     ..
265*     .. Intrinsic Functions ..
266      INTRINSIC          MAX, MIN, MOD, REAL
267*     ..
268*     .. Executable Statements ..
269*
270*     Test the input parameters
271*
272      ICTXT = DESCA( CTXT_ )
273      CALL BLACS_GRIDINFO( ICTXT, NPROW, NPCOL, MYROW, MYCOL )
274*
275*     Test the input parameters
276*
277      INFO = 0
278      IF( NPROW.EQ.-1 ) THEN
279         INFO = -(600+CTXT_)
280      ELSE
281         CALL CHK1MAT( M, 1, N, 2, IA, JA, DESCA, 6, INFO )
282         IF( INFO.EQ.0 ) THEN
283            IROFFA = MOD( IA-1, DESCA( MB_ ) )
284            ICOFFA = MOD( JA-1, DESCA( NB_ ) )
285            IAROW = INDXG2P( IA, DESCA( MB_ ), MYROW, DESCA( RSRC_ ),
286     $                       NPROW )
287            IACOL = INDXG2P( JA, DESCA( NB_ ), MYCOL, DESCA( CSRC_ ),
288     $                       NPCOL )
289            MPA0 = NUMROC( M+IROFFA, DESCA( MB_ ), MYROW, IAROW, NPROW )
290            NQA0 = NUMROC( N+ICOFFA, DESCA( NB_ ), MYCOL, IACOL, NPCOL )
291            LWMIN = MAX( MPA0, NQA0 )
292*
293            WORK( 1 ) = REAL( LWMIN )
294            LQUERY = ( LWORK.EQ.-1 )
295            IF( IROFFA.NE.ICOFFA ) THEN
296               INFO = -5
297            ELSE IF( DESCA( MB_ ).NE.DESCA( NB_ ) ) THEN
298               INFO = -(600+NB_)
299            ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
300               INFO = -12
301            END IF
302         END IF
303      END IF
304*
305      IF( INFO.LT.0 ) THEN
306         CALL PXERBLA( ICTXT, 'PSGEBD2', -INFO )
307         CALL BLACS_ABORT( ICTXT, 1 )
308         RETURN
309      ELSE IF( LQUERY ) THEN
310         RETURN
311      END IF
312*
313      CALL INFOG2L( IA, JA, DESCA, NPROW, NPCOL, MYROW, MYCOL, II, JJ,
314     $              IAROW, IACOL )
315*
316      IF( M.EQ.1 .AND. N.EQ.1 ) THEN
317         IF( MYCOL.EQ.IACOL ) THEN
318            IF( MYROW.EQ.IAROW ) THEN
319               I = II+(JJ-1)*DESCA( LLD_ )
320               CALL SLARFG( 1, A( I ), A( I ), 1, TAUQ( JJ ) )
321               D( JJ ) = A( I )
322               CALL SGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, D( JJ ),
323     $                       1 )
324               CALL SGEBS2D( ICTXT, 'Columnwise', ' ', 1, 1, TAUQ( JJ ),
325     $                       1 )
326            ELSE
327               CALL SGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, D( JJ ),
328     $                       1, IAROW, IACOL )
329               CALL SGEBR2D( ICTXT, 'Columnwise', ' ', 1, 1, TAUQ( JJ ),
330     $                       1, IAROW, IACOL )
331            END IF
332         END IF
333         IF( MYROW.EQ.IAROW )
334     $      TAUP( II ) = ZERO
335         RETURN
336      END IF
337*
338      ALPHA = ZERO
339*
340      IF( M.GE.N ) THEN
341*
342*        Reduce to upper bidiagonal form
343*
344         CALL DESCSET( DESCD, 1, JA+MIN(M,N)-1, 1, DESCA( NB_ ), MYROW,
345     $                 DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
346         CALL DESCSET( DESCE, IA+MIN(M,N)-1, 1, DESCA( MB_ ), 1,
347     $                 DESCA( RSRC_ ), MYCOL, DESCA( CTXT_ ),
348     $                 DESCA( LLD_ ) )
349         DO 10 K = 1, N
350            I = IA + K - 1
351            J = JA + K - 1
352*
353*           Generate elementary reflector H(j) to annihilate
354*           A(ia+i:ia+m-1,j)
355*
356            CALL PSLARFG( M-K+1, ALPHA, I, J, A, MIN( I+1, M+IA-1 ),
357     $                    J, DESCA, 1, TAUQ )
358            CALL PSELSET( D, 1, J, DESCD, ALPHA )
359            CALL PSELSET( A, I, J, DESCA, ONE )
360*
361*           Apply H(i) to A(i:ia+m-1,i+1:ja+n-1) from the left
362*
363            CALL PSLARF( 'Left', M-K+1, N-K, A, I, J, DESCA, 1, TAUQ, A,
364     $                   I, J+1, DESCA, WORK )
365            CALL PSELSET( A, I, J, DESCA, ALPHA )
366*
367            IF( K.LT.N ) THEN
368*
369*              Generate elementary reflector G(i) to annihilate
370*              A(i,ja+j+1:ja+n-1)
371*
372               CALL PSLARFG( N-K, ALPHA, I, J+1, A, I,
373     $                       MIN( J+2, JA+N-1 ), DESCA, DESCA( M_ ),
374     $                       TAUP )
375               CALL PSELSET( E, I, 1, DESCE, ALPHA )
376               CALL PSELSET( A, I, J+1, DESCA, ONE )
377*
378*              Apply G(i) to A(i+1:ia+m-1,i+1:ja+n-1) from the right
379*
380               CALL PSLARF( 'Right', M-K, N-K, A, I, J+1, DESCA,
381     $                      DESCA( M_ ), TAUP, A, I+1, J+1, DESCA,
382     $                      WORK )
383               CALL PSELSET( A, I, J+1, DESCA, ALPHA )
384            ELSE
385               CALL PSELSET( TAUP, I, 1, DESCE, ZERO )
386            END IF
387   10    CONTINUE
388*
389      ELSE
390*
391*        Reduce to lower bidiagonal form
392*
393         CALL DESCSET( DESCD, IA+MIN(M,N)-1, 1, DESCA( MB_ ), 1,
394     $                 DESCA( RSRC_ ), MYCOL, DESCA( CTXT_ ),
395     $                 DESCA( LLD_ ) )
396         CALL DESCSET( DESCE, 1, JA+MIN(M,N)-1, 1, DESCA( NB_ ), MYROW,
397     $                 DESCA( CSRC_ ), DESCA( CTXT_ ), 1 )
398         DO 20 K = 1, M
399            I = IA + K - 1
400            J = JA + K - 1
401*
402*           Generate elementary reflector G(i) to annihilate
403*           A(i,ja+j:ja+n-1)
404*
405            CALL PSLARFG( N-K+1, ALPHA, I, J, A, I,
406     $                    MIN( J+1, JA+N-1 ), DESCA, DESCA( M_ ), TAUP )
407            CALL PSELSET( D, I, 1, DESCD, ALPHA )
408            CALL PSELSET( A, I, J, DESCA, ONE )
409*
410*           Apply G(i) to A(i:ia+m-1,j:ja+n-1) from the right
411*
412            CALL PSLARF( 'Right', M-K, N-K+1, A, I, J, DESCA,
413     $                   DESCA( M_ ), TAUP, A, MIN( I+1, IA+M-1 ), J,
414     $                   DESCA, WORK )
415            CALL PSELSET( A, I, J, DESCA, ALPHA )
416*
417            IF( K.LT.M ) THEN
418*
419*              Generate elementary reflector H(i) to annihilate
420*              A(i+2:ia+m-1,j)
421*
422               CALL PSLARFG( M-K, ALPHA, I+1, J, A,
423     $                       MIN( I+2, IA+M-1 ), J, DESCA, 1, TAUQ )
424               CALL PSELSET( E, 1, J, DESCE, ALPHA )
425               CALL PSELSET( A, I+1, J, DESCA, ONE )
426*
427*              Apply H(i) to A(i+1:ia+m-1,j+1:ja+n-1) from the left
428*
429               CALL PSLARF( 'Left', M-K, N-K, A, I+1, J, DESCA, 1, TAUQ,
430     $                      A, I+1, J+1, DESCA, WORK )
431               CALL PSELSET( A, I+1, J, DESCA, ALPHA )
432            ELSE
433               CALL PSELSET( TAUQ, 1, J, DESCE, ZERO )
434            END IF
435   20    CONTINUE
436      END IF
437*
438      WORK( 1 ) = REAL( LWMIN )
439*
440      RETURN
441*
442*     End of PSGEBD2
443*
444      END
445