1 //  Boost rational.hpp header file  ------------------------------------------//
2 
3 //  (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
4 //  distribute this software is granted provided this copyright notice appears
5 //  in all copies. This software is provided "as is" without express or
6 //  implied warranty, and with no claim as to its suitability for any purpose.
7 
8 // boostinspect:nolicense (don't complain about the lack of a Boost license)
9 // (Paul Moore hasn't been in contact for years, so there's no way to change the
10 // license.)
11 
12 //  See http://www.boost.org/libs/rational for documentation.
13 
14 //  Credits:
15 //  Thanks to the boost mailing list in general for useful comments.
16 //  Particular contributions included:
17 //    Andrew D Jewell, for reminding me to take care to avoid overflow
18 //    Ed Brey, for many comments, including picking up on some dreadful typos
19 //    Stephen Silver contributed the test suite and comments on user-defined
20 //    IntType
21 //    Nickolay Mladenov, for the implementation of operator+=
22 
23 //  Revision History
24 //  12 Nov 20  Fix operators to work with C++20 rules (Glen Joseph Fernandes)
25 //  02 Sep 13  Remove unneeded forward declarations; tweak private helper
26 //             function (Daryle Walker)
27 //  30 Aug 13  Improve exception safety of "assign"; start modernizing I/O code
28 //             (Daryle Walker)
29 //  27 Aug 13  Add cross-version constructor template, plus some private helper
30 //             functions; add constructor to exception class to take custom
31 //             messages (Daryle Walker)
32 //  25 Aug 13  Add constexpr qualification wherever possible (Daryle Walker)
33 //  05 May 12  Reduced use of implicit gcd (Mario Lang)
34 //  05 Nov 06  Change rational_cast to not depend on division between different
35 //             types (Daryle Walker)
36 //  04 Nov 06  Off-load GCD and LCM to Boost.Integer; add some invariant checks;
37 //             add std::numeric_limits<> requirement to help GCD (Daryle Walker)
38 //  31 Oct 06  Recoded both operator< to use round-to-negative-infinity
39 //             divisions; the rational-value version now uses continued fraction
40 //             expansion to avoid overflows, for bug #798357 (Daryle Walker)
41 //  20 Oct 06  Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
42 //  18 Oct 06  Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
43 //             (Joaquín M López Muñoz)
44 //  27 Dec 05  Add Boolean conversion operator (Daryle Walker)
45 //  28 Sep 02  Use _left versions of operators from operators.hpp
46 //  05 Jul 01  Recode gcd(), avoiding std::swap (Helmut Zeisel)
47 //  03 Mar 01  Workarounds for Intel C++ 5.0 (David Abrahams)
48 //  05 Feb 01  Update operator>> to tighten up input syntax
49 //  05 Feb 01  Final tidy up of gcd code prior to the new release
50 //  27 Jan 01  Recode abs() without relying on abs(IntType)
51 //  21 Jan 01  Include Nickolay Mladenov's operator+= algorithm,
52 //             tidy up a number of areas, use newer features of operators.hpp
53 //             (reduces space overhead to zero), add operator!,
54 //             introduce explicit mixed-mode arithmetic operations
55 //  12 Jan 01  Include fixes to handle a user-defined IntType better
56 //  19 Nov 00  Throw on divide by zero in operator /= (John (EBo) David)
57 //  23 Jun 00  Incorporate changes from Mark Rodgers for Borland C++
58 //  22 Jun 00  Change _MSC_VER to BOOST_MSVC so other compilers are not
59 //             affected (Beman Dawes)
60 //   6 Mar 00  Fix operator-= normalization, #include <string> (Jens Maurer)
61 //  14 Dec 99  Modifications based on comments from the boost list
62 //  09 Dec 99  Initial Version (Paul Moore)
63 
64 #ifndef BOOST_RATIONAL_HPP
65 #define BOOST_RATIONAL_HPP
66 
67 #include <boost/config.hpp>      // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
68 #ifndef BOOST_NO_IOSTREAM
69 #include <iomanip>               // for std::setw
70 #include <ios>                   // for std::noskipws, streamsize
71 #include <istream>               // for std::istream
72 #include <ostream>               // for std::ostream
73 #include <sstream>               // for std::ostringstream
74 #endif
75 #include <cstddef>               // for NULL
76 #include <stdexcept>             // for std::domain_error
77 #include <string>                // for std::string implicit constructor
78 #include <cstdlib>               // for std::abs
79 #include <boost/call_traits.hpp> // for boost::call_traits
80 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
81 #include <boost/assert.hpp>      // for BOOST_ASSERT
82 #include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
83 #include <limits>                // for std::numeric_limits
84 #include <boost/static_assert.hpp>  // for BOOST_STATIC_ASSERT
85 #include <boost/throw_exception.hpp>
86 #include <boost/utility/enable_if.hpp>
87 #include <boost/type_traits/is_convertible.hpp>
88 #include <boost/type_traits/is_class.hpp>
89 #include <boost/type_traits/is_same.hpp>
90 #include <boost/type_traits/is_array.hpp>
91 
92 // Control whether depreciated GCD and LCM functions are included (default: yes)
93 #ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
94 #define BOOST_CONTROL_RATIONAL_HAS_GCD  1
95 #endif
96 
97 namespace boost {
98 
99 #if BOOST_CONTROL_RATIONAL_HAS_GCD
100 template <typename IntType>
gcd(IntType n,IntType m)101 IntType gcd(IntType n, IntType m)
102 {
103     // Defer to the version in Boost.Integer
104     return integer::gcd( n, m );
105 }
106 
107 template <typename IntType>
lcm(IntType n,IntType m)108 IntType lcm(IntType n, IntType m)
109 {
110     // Defer to the version in Boost.Integer
111     return integer::lcm( n, m );
112 }
113 #endif  // BOOST_CONTROL_RATIONAL_HAS_GCD
114 
115 namespace rational_detail{
116 
117    template <class FromInt, class ToInt, typename Enable = void>
118    struct is_compatible_integer;
119 
120    template <class FromInt, class ToInt>
121    struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
122    {
123       BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
124          && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)
125          && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
126          && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))
127          && is_convertible<FromInt, ToInt>::value)
128          || is_same<FromInt, ToInt>::value)
129          || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));
130    };
131 
132    template <class FromInt, class ToInt>
133    struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
134    {
135       BOOST_STATIC_CONSTANT(bool, value = false);
136    };
137 
138    template <class FromInt, class ToInt, typename Enable = void>
139    struct is_backward_compatible_integer;
140 
141    template <class FromInt, class ToInt>
142    struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
143    {
144       BOOST_STATIC_CONSTANT(bool, value = (std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
145          && !is_compatible_integer<FromInt, ToInt>::value
146          && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
147          && is_convertible<FromInt, ToInt>::value));
148    };
149 
150    template <class FromInt, class ToInt>
151    struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
152    {
153       BOOST_STATIC_CONSTANT(bool, value = false);
154    };
155 }
156 
157 class bad_rational : public std::domain_error
158 {
159 public:
bad_rational()160     explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
bad_rational(char const * what)161     explicit bad_rational( char const *what ) : std::domain_error( what ) {}
162 };
163 
164 template <typename IntType>
165 class rational
166 {
167     // Class-wide pre-conditions
168     BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
169 
170     // Helper types
171     typedef typename boost::call_traits<IntType>::param_type param_type;
172 
173     struct helper { IntType parts[2]; };
174     typedef IntType (helper::* bool_type)[2];
175 
176 public:
177     // Component type
178     typedef IntType int_type;
179 
180     BOOST_CONSTEXPR
rational()181     rational() : num(0), den(1) {}
182 
183     template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
rational(const T & n,typename enable_if_c<rational_detail::is_compatible_integer<T,IntType>::value>::type const * =0)184     BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<
185        rational_detail::is_compatible_integer<T, IntType>::value
186     >::type const* = 0) : num(n), den(1) {}
187 
188     template <class T, class U>
rational(const T & n,const U & d,typename enable_if_c<rational_detail::is_compatible_integer<T,IntType>::value && rational_detail::is_compatible_integer<U,IntType>::value>::type const * =0)189     BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
190        rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value
191     >::type const* = 0) : num(n), den(d) {
192        normalize();
193     }
194 
195     template < typename NewType >
196     BOOST_CONSTEXPR explicit
rational(rational<NewType> const & r,typename enable_if_c<rational_detail::is_compatible_integer<NewType,IntType>::value>::type const * =0)197        rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
198        : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
199        int_type(r.denominator())) ? r.denominator() :
200        (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
201 
202     template < typename NewType >
203     BOOST_CONSTEXPR explicit
rational(rational<NewType> const & r,typename disable_if_c<rational_detail::is_compatible_integer<NewType,IntType>::value>::type const * =0)204        rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
205        : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
206        int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :
207        (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
208     // Default copy constructor and assignment are fine
209 
210     // Add assignment from IntType
211     template <class T>
212     BOOST_CXX14_CONSTEXPR typename enable_if_c<
213        rational_detail::is_compatible_integer<T, IntType>::value, rational &
operator =(const T & n)214     >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }
215 
216     // Assign in place
217     template <class T, class U>
218     BOOST_CXX14_CONSTEXPR typename enable_if_c<
219        rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &
assign(const T & n,const U & d)220     >::type assign(const T& n, const U& d)
221     {
222        return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
223     }
224     //
225     // The following overloads should probably *not* be provided -
226     // but are provided for backwards compatibity reasons only.
227     // These allow for construction/assignment from types that
228     // are wider than IntType only if there is an implicit
229     // conversion from T to IntType, they will throw a bad_rational
230     // if the conversion results in loss of precision or undefined behaviour.
231     //
232     template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
rational(const T & n,typename enable_if_c<rational_detail::is_backward_compatible_integer<T,IntType>::value>::type const * =0)233     BOOST_CXX14_CONSTEXPR rational(const T& n, typename enable_if_c<
234        rational_detail::is_backward_compatible_integer<T, IntType>::value
235     >::type const* = 0)
236     {
237        assign(n, static_cast<T>(1));
238     }
239     template <class T, class U>
rational(const T & n,const U & d,typename enable_if_c<(!rational_detail::is_compatible_integer<T,IntType>::value||!rational_detail::is_compatible_integer<U,IntType>::value)&& std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer && (std::numeric_limits<T>::radix==std::numeric_limits<IntType>::radix)&& is_convertible<T,IntType>::value && std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer && (std::numeric_limits<U>::radix==std::numeric_limits<IntType>::radix)&& is_convertible<U,IntType>::value>::type const * =0)240     BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
241        (!rational_detail::is_compatible_integer<T, IntType>::value
242        || !rational_detail::is_compatible_integer<U, IntType>::value)
243        && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
244        && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
245        && is_convertible<T, IntType>::value &&
246        std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
247        && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
248        && is_convertible<U, IntType>::value
249     >::type const* = 0)
250     {
251        assign(n, d);
252     }
253     template <class T>
254     BOOST_CXX14_CONSTEXPR typename enable_if_c<
255        std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
256        && !rational_detail::is_compatible_integer<T, IntType>::value
257        && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
258        && is_convertible<T, IntType>::value,
259        rational &
operator =(const T & n)260     >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }
261 
262     template <class T, class U>
263     BOOST_CXX14_CONSTEXPR typename enable_if_c<
264        (!rational_detail::is_compatible_integer<T, IntType>::value
265           || !rational_detail::is_compatible_integer<U, IntType>::value)
266        && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
267        && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
268        && is_convertible<T, IntType>::value &&
269        std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
270        && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
271        && is_convertible<U, IntType>::value,
272        rational &
assign(const T & n,const U & d)273     >::type assign(const T& n, const U& d)
274     {
275        if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))
276           BOOST_THROW_EXCEPTION(bad_rational());
277        return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
278     }
279 
280     // Access to representation
281     BOOST_CONSTEXPR
numerator() const282     const IntType& numerator() const { return num; }
283     BOOST_CONSTEXPR
denominator() const284     const IntType& denominator() const { return den; }
285 
286     // Arithmetic assignment operators
287     BOOST_CXX14_CONSTEXPR rational& operator+= (const rational& r);
288     BOOST_CXX14_CONSTEXPR rational& operator-= (const rational& r);
289     BOOST_CXX14_CONSTEXPR rational& operator*= (const rational& r);
290     BOOST_CXX14_CONSTEXPR rational& operator/= (const rational& r);
291 
292     template <class T>
operator +=(const T & i)293     BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)
294     {
295        num += i * den;
296        return *this;
297     }
298     template <class T>
operator -=(const T & i)299     BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)
300     {
301        num -= i * den;
302        return *this;
303     }
304     template <class T>
operator *=(const T & i)305     BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)
306     {
307        // Avoid overflow and preserve normalization
308        IntType gcd = integer::gcd(static_cast<IntType>(i), den);
309        num *= i / gcd;
310        den /= gcd;
311        return *this;
312     }
313     template <class T>
operator /=(const T & i)314     BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)
315     {
316        // Avoid repeated construction
317        IntType const zero(0);
318 
319        if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
320        if(num == zero) return *this;
321 
322        // Avoid overflow and preserve normalization
323        IntType const gcd = integer::gcd(num, static_cast<IntType>(i));
324        num /= gcd;
325        den *= i / gcd;
326 
327        if(den < zero) {
328           num = -num;
329           den = -den;
330        }
331 
332        return *this;
333     }
334 
335     // Increment and decrement
operator ++()336     BOOST_CXX14_CONSTEXPR const rational& operator++() { num += den; return *this; }
operator --()337     BOOST_CXX14_CONSTEXPR const rational& operator--() { num -= den; return *this; }
338 
operator ++(int)339     BOOST_CXX14_CONSTEXPR rational operator++(int)
340     {
341        rational t(*this);
342        ++(*this);
343        return t;
344     }
operator --(int)345     BOOST_CXX14_CONSTEXPR rational operator--(int)
346     {
347        rational t(*this);
348        --(*this);
349        return t;
350     }
351 
352     // Operator not
353     BOOST_CONSTEXPR
operator !() const354     bool operator!() const { return !num; }
355 
356     // Boolean conversion
357 
358 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
359     // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
360     // following, hence we selectively disable that option for the
361     // offending memfun.
362 #pragma parse_mfunc_templ off
363 #endif
364 
365     BOOST_CONSTEXPR
operator bool_type() const366     operator bool_type() const { return operator !() ? 0 : &helper::parts; }
367 
368 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
369 #pragma parse_mfunc_templ reset
370 #endif
371 
372     // Comparison operators
373     BOOST_CXX14_CONSTEXPR bool operator< (const rational& r) const;
operator >(const rational & r) const374     BOOST_CXX14_CONSTEXPR bool operator> (const rational& r) const { return r < *this; }
375     BOOST_CONSTEXPR
376     bool operator== (const rational& r) const;
377 
378     template <class T>
operator <(const T & i) const379     BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const
380     {
381        // Avoid repeated construction
382        int_type const  zero(0);
383 
384        // Break value into mixed-fraction form, w/ always-nonnegative remainder
385        BOOST_ASSERT(this->den > zero);
386        int_type  q = this->num / this->den, r = this->num % this->den;
387        while(r < zero)  { r += this->den; --q; }
388 
389        // Compare with just the quotient, since the remainder always bumps the
390        // value up.  [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
391        // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
392        // q >= i + 1 > i; therefore n/d < i iff q < i.]
393        return q < i;
394     }
395     template <class T>
operator >(const T & i) const396     BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const
397     {
398        return operator==(i) ? false : !operator<(i);
399     }
400     template <class T>
operator ==(const T & i) const401     BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const
402     {
403        return ((den == IntType(1)) && (num == i));
404     }
405 
406 private:
407     // Implementation - numerator and denominator (normalized).
408     // Other possibilities - separate whole-part, or sign, fields?
409     IntType num;
410     IntType den;
411 
412     // Helper functions
413     static BOOST_CONSTEXPR
inner_gcd(param_type a,param_type b,int_type const & zero=int_type (0))414     int_type inner_gcd( param_type a, param_type b, int_type const &zero =
415      int_type(0) )
416     { return b == zero ? a : inner_gcd(b, a % b, zero); }
417 
418     static BOOST_CONSTEXPR
inner_abs(param_type x,int_type const & zero=int_type (0))419     int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
420     { return x < zero ? -x : +x; }
421 
422     // Representation note: Fractions are kept in normalized form at all
423     // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
424     // In particular, note that the implementation of abs() below relies
425     // on den always being positive.
426     BOOST_CXX14_CONSTEXPR bool test_invariant() const;
427     BOOST_CXX14_CONSTEXPR void normalize();
428 
429     static BOOST_CONSTEXPR
is_normalized(param_type n,param_type d,int_type const & zero=int_type (0),int_type const & one=int_type (1))430     bool is_normalized( param_type n, param_type d, int_type const &zero =
431      int_type(0), int_type const &one = int_type(1) )
432     {
433         return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
434          d, zero), zero ) == one;
435     }
436     //
437     // Conversion checks:
438     //
439     // (1) From an unsigned type with more digits than IntType:
440     //
441     template <class T>
is_safe_narrowing_conversion(const T & val)442     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
443     {
444        return val < (T(1) << std::numeric_limits<IntType>::digits);
445     }
446     //
447     // (2) From a signed type with more digits than IntType, and IntType also signed:
448     //
449     template <class T>
is_safe_narrowing_conversion(const T & val)450     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)
451     {
452        // Note that this check assumes IntType has a 2's complement representation,
453        // we don't want to try to convert a std::numeric_limits<IntType>::min() to
454        // a T because that conversion may not be allowed (this happens when IntType
455        // is from Boost.Multiprecision).
456        return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));
457     }
458     //
459     // (3) From a signed type with more digits than IntType, and IntType unsigned:
460     //
461     template <class T>
is_safe_narrowing_conversion(const T & val)462     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
463     {
464        return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);
465     }
466     //
467     // (4) From a signed type with fewer digits than IntType, and IntType unsigned:
468     //
469     template <class T>
is_safe_narrowing_conversion(const T & val)470     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
471     {
472        return val >= 0;
473     }
474     //
475     // (5) From an unsigned type with fewer digits than IntType, and IntType signed:
476     //
477     template <class T>
is_safe_narrowing_conversion(const T &)478     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
479     {
480        return true;
481     }
482     //
483     // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:
484     //
485     template <class T>
is_safe_narrowing_conversion(const T &)486     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)
487     {
488        return true;
489     }
490     //
491     // (7) From an signed type with fewer digits than IntType, and IntType signed:
492     //
493     template <class T>
is_safe_narrowing_conversion(const T &)494     BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
495     {
496        return true;
497     }
498 };
499 
500 // Unary plus and minus
501 template <typename IntType>
502 BOOST_CONSTEXPR
operator +(const rational<IntType> & r)503 inline rational<IntType> operator+ (const rational<IntType>& r)
504 {
505     return r;
506 }
507 
508 template <typename IntType>
509 BOOST_CXX14_CONSTEXPR
operator -(const rational<IntType> & r)510 inline rational<IntType> operator- (const rational<IntType>& r)
511 {
512     return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());
513 }
514 
515 // Arithmetic assignment operators
516 template <typename IntType>
operator +=(const rational<IntType> & r)517 BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
518 {
519     // This calculation avoids overflow, and minimises the number of expensive
520     // calculations. Thanks to Nickolay Mladenov for this algorithm.
521     //
522     // Proof:
523     // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
524     // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
525     //
526     // The result is (a*d1 + c*b1) / (b1*d1*g).
527     // Now we have to normalize this ratio.
528     // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
529     // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
530     // But since gcd(a,b1)=1 we have h=1.
531     // Similarly h|d1 leads to h=1.
532     // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
533     // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
534     // Which proves that instead of normalizing the result, it is better to
535     // divide num and den by gcd((a*d1 + c*b1), g)
536 
537     // Protect against self-modification
538     IntType r_num = r.num;
539     IntType r_den = r.den;
540 
541     IntType g = integer::gcd(den, r_den);
542     den /= g;  // = b1 from the calculations above
543     num = num * (r_den / g) + r_num * den;
544     g = integer::gcd(num, g);
545     num /= g;
546     den *= r_den/g;
547 
548     return *this;
549 }
550 
551 template <typename IntType>
operator -=(const rational<IntType> & r)552 BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
553 {
554     // Protect against self-modification
555     IntType r_num = r.num;
556     IntType r_den = r.den;
557 
558     // This calculation avoids overflow, and minimises the number of expensive
559     // calculations. It corresponds exactly to the += case above
560     IntType g = integer::gcd(den, r_den);
561     den /= g;
562     num = num * (r_den / g) - r_num * den;
563     g = integer::gcd(num, g);
564     num /= g;
565     den *= r_den/g;
566 
567     return *this;
568 }
569 
570 template <typename IntType>
operator *=(const rational<IntType> & r)571 BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
572 {
573     // Protect against self-modification
574     IntType r_num = r.num;
575     IntType r_den = r.den;
576 
577     // Avoid overflow and preserve normalization
578     IntType gcd1 = integer::gcd(num, r_den);
579     IntType gcd2 = integer::gcd(r_num, den);
580     num = (num/gcd1) * (r_num/gcd2);
581     den = (den/gcd2) * (r_den/gcd1);
582     return *this;
583 }
584 
585 template <typename IntType>
operator /=(const rational<IntType> & r)586 BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
587 {
588     // Protect against self-modification
589     IntType r_num = r.num;
590     IntType r_den = r.den;
591 
592     // Avoid repeated construction
593     IntType zero(0);
594 
595     // Trap division by zero
596     if (r_num == zero)
597         BOOST_THROW_EXCEPTION(bad_rational());
598     if (num == zero)
599         return *this;
600 
601     // Avoid overflow and preserve normalization
602     IntType gcd1 = integer::gcd(num, r_num);
603     IntType gcd2 = integer::gcd(r_den, den);
604     num = (num/gcd1) * (r_den/gcd2);
605     den = (den/gcd2) * (r_num/gcd1);
606 
607     if (den < zero) {
608         num = -num;
609         den = -den;
610     }
611     return *this;
612 }
613 
614 
615 //
616 // Non-member operators: previously these were provided by Boost.Operator, but these had a number of
617 // drawbacks, most notably, that in order to allow inter-operability with IntType code such as this:
618 //
619 // rational<int> r(3);
620 // assert(r == 3.5); // compiles and passes!!
621 //
622 // Happens to be allowed as well :-(
623 //
624 // There are three possible cases for each operator:
625 // 1) rational op rational.
626 // 2) rational op integer
627 // 3) integer op rational
628 // Cases (1) and (2) are folded into the one function.
629 //
630 template <class IntType, class Arg>
631 BOOST_CXX14_CONSTEXPR
632 inline typename boost::enable_if_c <
633    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
operator +(const rational<IntType> & a,const Arg & b)634    operator + (const rational<IntType>& a, const Arg& b)
635 {
636       rational<IntType> t(a);
637       return t += b;
638 }
639 template <class Arg, class IntType>
640 BOOST_CXX14_CONSTEXPR
641 inline typename boost::enable_if_c <
642    rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
operator +(const Arg & b,const rational<IntType> & a)643    operator + (const Arg& b, const rational<IntType>& a)
644 {
645       rational<IntType> t(a);
646       return t += b;
647 }
648 
649 template <class IntType, class Arg>
650 BOOST_CXX14_CONSTEXPR
651 inline typename boost::enable_if_c <
652    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
operator -(const rational<IntType> & a,const Arg & b)653    operator - (const rational<IntType>& a, const Arg& b)
654 {
655       rational<IntType> t(a);
656       return t -= b;
657 }
658 template <class Arg, class IntType>
659 BOOST_CXX14_CONSTEXPR
660 inline typename boost::enable_if_c <
661    rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
operator -(const Arg & b,const rational<IntType> & a)662    operator - (const Arg& b, const rational<IntType>& a)
663 {
664       rational<IntType> t(a);
665       return -(t -= b);
666 }
667 
668 template <class IntType, class Arg>
669 BOOST_CXX14_CONSTEXPR
670 inline typename boost::enable_if_c <
671    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
operator *(const rational<IntType> & a,const Arg & b)672    operator * (const rational<IntType>& a, const Arg& b)
673 {
674       rational<IntType> t(a);
675       return t *= b;
676 }
677 template <class Arg, class IntType>
678 BOOST_CXX14_CONSTEXPR
679 inline typename boost::enable_if_c <
680    rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
operator *(const Arg & b,const rational<IntType> & a)681    operator * (const Arg& b, const rational<IntType>& a)
682 {
683       rational<IntType> t(a);
684       return t *= b;
685 }
686 
687 template <class IntType, class Arg>
688 BOOST_CXX14_CONSTEXPR
689 inline typename boost::enable_if_c <
690    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
operator /(const rational<IntType> & a,const Arg & b)691    operator / (const rational<IntType>& a, const Arg& b)
692 {
693       rational<IntType> t(a);
694       return t /= b;
695 }
696 template <class Arg, class IntType>
697 BOOST_CXX14_CONSTEXPR
698 inline typename boost::enable_if_c <
699    rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
operator /(const Arg & b,const rational<IntType> & a)700    operator / (const Arg& b, const rational<IntType>& a)
701 {
702       rational<IntType> t(b);
703       return t /= a;
704 }
705 
706 template <class IntType, class Arg>
707 BOOST_CXX14_CONSTEXPR
708 inline typename boost::enable_if_c <
709    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
operator <=(const rational<IntType> & a,const Arg & b)710    operator <= (const rational<IntType>& a, const Arg& b)
711 {
712       return !a.operator>(b);
713 }
714 template <class Arg, class IntType>
715 BOOST_CXX14_CONSTEXPR
716 inline typename boost::enable_if_c <
717    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator <=(const Arg & b,const rational<IntType> & a)718    operator <= (const Arg& b, const rational<IntType>& a)
719 {
720       return a >= b;
721 }
722 
723 template <class IntType, class Arg>
724 BOOST_CXX14_CONSTEXPR
725 inline typename boost::enable_if_c <
726    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
operator >=(const rational<IntType> & a,const Arg & b)727    operator >= (const rational<IntType>& a, const Arg& b)
728 {
729       return !a.operator<(b);
730 }
731 template <class Arg, class IntType>
732 BOOST_CXX14_CONSTEXPR
733 inline typename boost::enable_if_c <
734    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator >=(const Arg & b,const rational<IntType> & a)735    operator >= (const Arg& b, const rational<IntType>& a)
736 {
737       return a <= b;
738 }
739 
740 template <class IntType, class Arg>
741 BOOST_CONSTEXPR
742 inline typename boost::enable_if_c <
743    rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
operator !=(const rational<IntType> & a,const Arg & b)744    operator != (const rational<IntType>& a, const Arg& b)
745 {
746       return !a.operator==(b);
747 }
748 template <class Arg, class IntType>
749 BOOST_CONSTEXPR
750 inline typename boost::enable_if_c <
751    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator !=(const Arg & b,const rational<IntType> & a)752    operator != (const Arg& b, const rational<IntType>& a)
753 {
754       return !(b == a);
755 }
756 
757 template <class Arg, class IntType>
758 BOOST_CXX14_CONSTEXPR
759 inline typename boost::enable_if_c <
760    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator <(const Arg & b,const rational<IntType> & a)761    operator < (const Arg& b, const rational<IntType>& a)
762 {
763       return a.operator>(b);
764 }
765 template <class Arg, class IntType>
766 BOOST_CXX14_CONSTEXPR
767 inline typename boost::enable_if_c <
768    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator >(const Arg & b,const rational<IntType> & a)769    operator > (const Arg& b, const rational<IntType>& a)
770 {
771       return a.operator<(b);
772 }
773 template <class Arg, class IntType>
774 BOOST_CONSTEXPR
775 inline typename boost::enable_if_c <
776    rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
operator ==(const Arg & b,const rational<IntType> & a)777    operator == (const Arg& b, const rational<IntType>& a)
778 {
779       return a.operator==(b);
780 }
781 
782 // Comparison operators
783 template <typename IntType>
784 BOOST_CXX14_CONSTEXPR
operator <(const rational<IntType> & r) const785 bool rational<IntType>::operator< (const rational<IntType>& r) const
786 {
787     // Avoid repeated construction
788     int_type const  zero( 0 );
789 
790     // This should really be a class-wide invariant.  The reason for these
791     // checks is that for 2's complement systems, INT_MIN has no corresponding
792     // positive, so negating it during normalization keeps it INT_MIN, which
793     // is bad for later calculations that assume a positive denominator.
794     BOOST_ASSERT( this->den > zero );
795     BOOST_ASSERT( r.den > zero );
796 
797     // Determine relative order by expanding each value to its simple continued
798     // fraction representation using the Euclidian GCD algorithm.
799     struct { int_type  n, d, q, r; }
800      ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
801      static_cast<int_type>(this->num % this->den) },
802      rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
803      static_cast<int_type>(r.num % r.den) };
804     unsigned  reverse = 0u;
805 
806     // Normalize negative moduli by repeatedly adding the (positive) denominator
807     // and decrementing the quotient.  Later cycles should have all positive
808     // values, so this only has to be done for the first cycle.  (The rules of
809     // C++ require a nonnegative quotient & remainder for a nonnegative dividend
810     // & positive divisor.)
811     while ( ts.r < zero )  { ts.r += ts.d; --ts.q; }
812     while ( rs.r < zero )  { rs.r += rs.d; --rs.q; }
813 
814     // Loop through and compare each variable's continued-fraction components
815     for ( ;; )
816     {
817         // The quotients of the current cycle are the continued-fraction
818         // components.  Comparing two c.f. is comparing their sequences,
819         // stopping at the first difference.
820         if ( ts.q != rs.q )
821         {
822             // Since reciprocation changes the relative order of two variables,
823             // and c.f. use reciprocals, the less/greater-than test reverses
824             // after each index.  (Start w/ non-reversed @ whole-number place.)
825             return reverse ? ts.q > rs.q : ts.q < rs.q;
826         }
827 
828         // Prepare the next cycle
829         reverse ^= 1u;
830 
831         if ( (ts.r == zero) || (rs.r == zero) )
832         {
833             // At least one variable's c.f. expansion has ended
834             break;
835         }
836 
837         ts.n = ts.d;         ts.d = ts.r;
838         ts.q = ts.n / ts.d;  ts.r = ts.n % ts.d;
839         rs.n = rs.d;         rs.d = rs.r;
840         rs.q = rs.n / rs.d;  rs.r = rs.n % rs.d;
841     }
842 
843     // Compare infinity-valued components for otherwise equal sequences
844     if ( ts.r == rs.r )
845     {
846         // Both remainders are zero, so the next (and subsequent) c.f.
847         // components for both sequences are infinity.  Therefore, the sequences
848         // and their corresponding values are equal.
849         return false;
850     }
851     else
852     {
853 #ifdef BOOST_MSVC
854 #pragma warning(push)
855 #pragma warning(disable:4800)
856 #endif
857         // Exactly one of the remainders is zero, so all following c.f.
858         // components of that variable are infinity, while the other variable
859         // has a finite next c.f. component.  So that other variable has the
860         // lesser value (modulo the reversal flag!).
861         return ( ts.r != zero ) != static_cast<bool>( reverse );
862 #ifdef BOOST_MSVC
863 #pragma warning(pop)
864 #endif
865     }
866 }
867 
868 template <typename IntType>
869 BOOST_CONSTEXPR
operator ==(const rational<IntType> & r) const870 inline bool rational<IntType>::operator== (const rational<IntType>& r) const
871 {
872     return ((num == r.num) && (den == r.den));
873 }
874 
875 // Invariant check
876 template <typename IntType>
877 BOOST_CXX14_CONSTEXPR
test_invariant() const878 inline bool rational<IntType>::test_invariant() const
879 {
880     return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
881      int_type(1) );
882 }
883 
884 // Normalisation
885 template <typename IntType>
normalize()886 BOOST_CXX14_CONSTEXPR void rational<IntType>::normalize()
887 {
888     // Avoid repeated construction
889     IntType zero(0);
890 
891     if (den == zero)
892        BOOST_THROW_EXCEPTION(bad_rational());
893 
894     // Handle the case of zero separately, to avoid division by zero
895     if (num == zero) {
896         den = IntType(1);
897         return;
898     }
899 
900     IntType g = integer::gcd(num, den);
901 
902     num /= g;
903     den /= g;
904 
905     if (den < -(std::numeric_limits<IntType>::max)()) {
906         BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));
907     }
908 
909     // Ensure that the denominator is positive
910     if (den < zero) {
911         num = -num;
912         den = -den;
913     }
914 
915     BOOST_ASSERT( this->test_invariant() );
916 }
917 
918 #ifndef BOOST_NO_IOSTREAM
919 namespace detail {
920 
921     // A utility class to reset the format flags for an istream at end
922     // of scope, even in case of exceptions
923     struct resetter {
resetterboost::detail::resetter924         resetter(std::istream& is) : is_(is), f_(is.flags()) {}
~resetterboost::detail::resetter925         ~resetter() { is_.flags(f_); }
926         std::istream& is_;
927         std::istream::fmtflags f_;      // old GNU c++ lib has no ios_base
928     };
929 
930 }
931 
932 // Input and output
933 template <typename IntType>
operator >>(std::istream & is,rational<IntType> & r)934 std::istream& operator>> (std::istream& is, rational<IntType>& r)
935 {
936     using std::ios;
937 
938     IntType n = IntType(0), d = IntType(1);
939     char c = 0;
940     detail::resetter sentry(is);
941 
942     if ( is >> n )
943     {
944         if ( is.get(c) )
945         {
946             if ( c == '/' )
947             {
948                 if ( is >> std::noskipws >> d )
949                     try {
950                         r.assign( n, d );
951                     } catch ( bad_rational & ) {        // normalization fail
952                         try { is.setstate(ios::failbit); }
953                         catch ( ... ) {}  // don't throw ios_base::failure...
954                         if ( is.exceptions() & ios::failbit )
955                             throw;   // ...but the original exception instead
956                         // ELSE: suppress the exception, use just error flags
957                     }
958             }
959             else
960                 is.setstate( ios::failbit );
961         }
962     }
963 
964     return is;
965 }
966 
967 // Add manipulators for output format?
968 template <typename IntType>
operator <<(std::ostream & os,const rational<IntType> & r)969 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
970 {
971     // The slash directly precedes the denominator, which has no prefixes.
972     std::ostringstream  ss;
973 
974     ss.copyfmt( os );
975     ss.tie( NULL );
976     ss.exceptions( std::ios::goodbit );
977     ss.width( 0 );
978     ss << std::noshowpos << std::noshowbase << '/' << r.denominator();
979 
980     // The numerator holds the showpos, internal, and showbase flags.
981     std::string const   tail = ss.str();
982     std::streamsize const  w =
983         os.width() - static_cast<std::streamsize>( tail.size() );
984 
985     ss.clear();
986     ss.str( "" );
987     ss.flags( os.flags() );
988     ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
989                      std::ios::internal ? 0 : w ) << r.numerator();
990     return os << ss.str() + tail;
991 }
992 #endif  // BOOST_NO_IOSTREAM
993 
994 // Type conversion
995 template <typename T, typename IntType>
996 BOOST_CONSTEXPR
rational_cast(const rational<IntType> & src)997 inline T rational_cast(const rational<IntType>& src)
998 {
999     return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
1000 }
1001 
1002 // Do not use any abs() defined on IntType - it isn't worth it, given the
1003 // difficulties involved (Koenig lookup required, there may not *be* an abs()
1004 // defined, etc etc).
1005 template <typename IntType>
1006 BOOST_CXX14_CONSTEXPR
abs(const rational<IntType> & r)1007 inline rational<IntType> abs(const rational<IntType>& r)
1008 {
1009     return r.numerator() >= IntType(0)? r: -r;
1010 }
1011 
1012 namespace integer {
1013 
1014 template <typename IntType>
1015 struct gcd_evaluator< rational<IntType> >
1016 {
1017     typedef rational<IntType> result_type,
1018                               first_argument_type, second_argument_type;
operator ()boost::integer::gcd_evaluator1019     result_type operator() (  first_argument_type const &a
1020                            , second_argument_type const &b
1021                            ) const
1022     {
1023         return result_type(integer::gcd(a.numerator(), b.numerator()),
1024                            integer::lcm(a.denominator(), b.denominator()));
1025     }
1026 };
1027 
1028 template <typename IntType>
1029 struct lcm_evaluator< rational<IntType> >
1030 {
1031     typedef rational<IntType> result_type,
1032                               first_argument_type, second_argument_type;
operator ()boost::integer::lcm_evaluator1033     result_type operator() (  first_argument_type const &a
1034                            , second_argument_type const &b
1035                            ) const
1036     {
1037         return result_type(integer::lcm(a.numerator(), b.numerator()),
1038                            integer::gcd(a.denominator(), b.denominator()));
1039     }
1040 };
1041 
1042 } // namespace integer
1043 
1044 } // namespace boost
1045 
1046 #endif  // BOOST_RATIONAL_HPP
1047