1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2015 Benoit Jacob <benoitjacob@google.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include <iostream>
11 #include <cstdint>
12 #include <cstdlib>
13 #include <vector>
14 #include <fstream>
15 #include <memory>
16 #include <cstdio>
17 
18 bool eigen_use_specific_block_size;
19 int eigen_block_size_k, eigen_block_size_m, eigen_block_size_n;
20 #define EIGEN_TEST_SPECIFIC_BLOCKING_SIZES eigen_use_specific_block_size
21 #define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_K eigen_block_size_k
22 #define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_M eigen_block_size_m
23 #define EIGEN_TEST_SPECIFIC_BLOCKING_SIZE_N eigen_block_size_n
24 #include <Eigen/Core>
25 
26 #include <bench/BenchTimer.h>
27 
28 using namespace Eigen;
29 using namespace std;
30 
31 static BenchTimer timer;
32 
33 // how many times we repeat each measurement.
34 // measurements are randomly shuffled - we're not doing
35 // all N identical measurements in a row.
36 const int measurement_repetitions = 3;
37 
38 // Timings below this value are too short to be accurate,
39 // we'll repeat measurements with more iterations until
40 // we get a timing above that threshold.
41 const float min_accurate_time = 1e-2f;
42 
43 // See --min-working-set-size command line parameter.
44 size_t min_working_set_size = 0;
45 
46 float max_clock_speed = 0.0f;
47 
48 // range of sizes that we will benchmark (in all 3 K,M,N dimensions)
49 const size_t maxsize = 2048;
50 const size_t minsize = 16;
51 
52 typedef MatrixXf MatrixType;
53 typedef MatrixType::Scalar Scalar;
54 typedef internal::packet_traits<Scalar>::type Packet;
55 
56 static_assert((maxsize & (maxsize - 1)) == 0, "maxsize must be a power of two");
57 static_assert((minsize & (minsize - 1)) == 0, "minsize must be a power of two");
58 static_assert(maxsize > minsize, "maxsize must be larger than minsize");
59 static_assert(maxsize < (minsize << 16), "maxsize must be less than (minsize<<16)");
60 
61 // just a helper to store a triple of K,M,N sizes for matrix product
62 struct size_triple_t
63 {
64   size_t k, m, n;
size_triple_tsize_triple_t65   size_triple_t() : k(0), m(0), n(0) {}
size_triple_tsize_triple_t66   size_triple_t(size_t _k, size_t _m, size_t _n) : k(_k), m(_m), n(_n) {}
size_triple_tsize_triple_t67   size_triple_t(const size_triple_t& o) : k(o.k), m(o.m), n(o.n) {}
size_triple_tsize_triple_t68   size_triple_t(uint16_t compact)
69   {
70     k = 1 << ((compact & 0xf00) >> 8);
71     m = 1 << ((compact & 0x0f0) >> 4);
72     n = 1 << ((compact & 0x00f) >> 0);
73   }
74 };
75 
log2_pot(size_t x)76 uint8_t log2_pot(size_t x) {
77   size_t l = 0;
78   while (x >>= 1) l++;
79   return l;
80 }
81 
82 // Convert between size tripes and a compact form fitting in 12 bits
83 // where each size, which must be a POT, is encoded as its log2, on 4 bits
84 // so the largest representable size is 2^15 == 32k  ... big enough.
compact_size_triple(size_t k,size_t m,size_t n)85 uint16_t compact_size_triple(size_t k, size_t m, size_t n)
86 {
87   return (log2_pot(k) << 8) | (log2_pot(m) << 4) | log2_pot(n);
88 }
89 
compact_size_triple(const size_triple_t & t)90 uint16_t compact_size_triple(const size_triple_t& t)
91 {
92   return compact_size_triple(t.k, t.m, t.n);
93 }
94 
95 // A single benchmark. Initially only contains benchmark params.
96 // Then call run(), which stores the result in the gflops field.
97 struct benchmark_t
98 {
99   uint16_t compact_product_size;
100   uint16_t compact_block_size;
101   bool use_default_block_size;
102   float gflops;
benchmark_tbenchmark_t103   benchmark_t()
104     : compact_product_size(0)
105     , compact_block_size(0)
106     , use_default_block_size(false)
107     , gflops(0)
108   {
109   }
benchmark_tbenchmark_t110   benchmark_t(size_t pk, size_t pm, size_t pn,
111               size_t bk, size_t bm, size_t bn)
112     : compact_product_size(compact_size_triple(pk, pm, pn))
113     , compact_block_size(compact_size_triple(bk, bm, bn))
114     , use_default_block_size(false)
115     , gflops(0)
116   {}
benchmark_tbenchmark_t117   benchmark_t(size_t pk, size_t pm, size_t pn)
118     : compact_product_size(compact_size_triple(pk, pm, pn))
119     , compact_block_size(0)
120     , use_default_block_size(true)
121     , gflops(0)
122   {}
123 
124   void run();
125 };
126 
operator <<(ostream & s,const benchmark_t & b)127 ostream& operator<<(ostream& s, const benchmark_t& b)
128 {
129   s << hex << b.compact_product_size << dec;
130   if (b.use_default_block_size) {
131     size_triple_t t(b.compact_product_size);
132     Index k = t.k, m = t.m, n = t.n;
133     internal::computeProductBlockingSizes<Scalar, Scalar>(k, m, n);
134     s << " default(" << k << ", " << m << ", " << n << ")";
135   } else {
136     s << " " << hex << b.compact_block_size << dec;
137   }
138   s << " " << b.gflops;
139   return s;
140 }
141 
142 // We sort first by increasing benchmark parameters,
143 // then by decreasing performance.
operator <(const benchmark_t & b1,const benchmark_t & b2)144 bool operator<(const benchmark_t& b1, const benchmark_t& b2)
145 {
146   return b1.compact_product_size < b2.compact_product_size ||
147            (b1.compact_product_size == b2.compact_product_size && (
148              (b1.compact_block_size < b2.compact_block_size || (
149                b1.compact_block_size == b2.compact_block_size &&
150                  b1.gflops > b2.gflops))));
151 }
152 
run()153 void benchmark_t::run()
154 {
155   size_triple_t productsizes(compact_product_size);
156 
157   if (use_default_block_size) {
158     eigen_use_specific_block_size = false;
159   } else {
160     // feed eigen with our custom blocking params
161     eigen_use_specific_block_size = true;
162     size_triple_t blocksizes(compact_block_size);
163     eigen_block_size_k = blocksizes.k;
164     eigen_block_size_m = blocksizes.m;
165     eigen_block_size_n = blocksizes.n;
166   }
167 
168   // set up the matrix pool
169 
170   const size_t combined_three_matrices_sizes =
171     sizeof(Scalar) *
172       (productsizes.k * productsizes.m +
173        productsizes.k * productsizes.n +
174        productsizes.m * productsizes.n);
175 
176   // 64 M is large enough that nobody has a cache bigger than that,
177   // while still being small enough that everybody has this much RAM,
178   // so conveniently we don't need to special-case platforms here.
179   const size_t unlikely_large_cache_size = 64 << 20;
180 
181   const size_t working_set_size =
182     min_working_set_size ? min_working_set_size : unlikely_large_cache_size;
183 
184   const size_t matrix_pool_size =
185     1 + working_set_size / combined_three_matrices_sizes;
186 
187   MatrixType *lhs = new MatrixType[matrix_pool_size];
188   MatrixType *rhs = new MatrixType[matrix_pool_size];
189   MatrixType *dst = new MatrixType[matrix_pool_size];
190 
191   for (size_t i = 0; i < matrix_pool_size; i++) {
192     lhs[i] = MatrixType::Zero(productsizes.m, productsizes.k);
193     rhs[i] = MatrixType::Zero(productsizes.k, productsizes.n);
194     dst[i] = MatrixType::Zero(productsizes.m, productsizes.n);
195   }
196 
197   // main benchmark loop
198 
199   int iters_at_a_time = 1;
200   float time_per_iter = 0.0f;
201   size_t matrix_index = 0;
202   while (true) {
203 
204     double starttime = timer.getCpuTime();
205     for (int i = 0; i < iters_at_a_time; i++) {
206       dst[matrix_index].noalias() = lhs[matrix_index] * rhs[matrix_index];
207       matrix_index++;
208       if (matrix_index == matrix_pool_size) {
209         matrix_index = 0;
210       }
211     }
212     double endtime = timer.getCpuTime();
213 
214     const float timing = float(endtime - starttime);
215 
216     if (timing >= min_accurate_time) {
217       time_per_iter = timing / iters_at_a_time;
218       break;
219     }
220 
221     iters_at_a_time *= 2;
222   }
223 
224   delete[] lhs;
225   delete[] rhs;
226   delete[] dst;
227 
228   gflops = 2e-9 * productsizes.k * productsizes.m * productsizes.n / time_per_iter;
229 }
230 
print_cpuinfo()231 void print_cpuinfo()
232 {
233 #ifdef __linux__
234   cout << "contents of /proc/cpuinfo:" << endl;
235   string line;
236   ifstream cpuinfo("/proc/cpuinfo");
237   if (cpuinfo.is_open()) {
238     while (getline(cpuinfo, line)) {
239       cout << line << endl;
240     }
241     cpuinfo.close();
242   }
243   cout << endl;
244 #elif defined __APPLE__
245   cout << "output of sysctl hw:" << endl;
246   system("sysctl hw");
247   cout << endl;
248 #endif
249 }
250 
251 template <typename T>
type_name()252 string type_name()
253 {
254   return "unknown";
255 }
256 
257 template<>
type_name()258 string type_name<float>()
259 {
260   return "float";
261 }
262 
263 template<>
type_name()264 string type_name<double>()
265 {
266   return "double";
267 }
268 
269 struct action_t
270 {
invokation_nameaction_t271   virtual const char* invokation_name() const { abort(); return nullptr; }
runaction_t272   virtual void run() const { abort(); }
~action_taction_t273   virtual ~action_t() {}
274 };
275 
show_usage_and_exit(int,char * argv[],const vector<unique_ptr<action_t>> & available_actions)276 void show_usage_and_exit(int /*argc*/, char* argv[],
277                          const vector<unique_ptr<action_t>>& available_actions)
278 {
279   cerr << "usage: " << argv[0] << " <action> [options...]" << endl << endl;
280   cerr << "available actions:" << endl << endl;
281   for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
282     cerr << "  " << (*it)->invokation_name() << endl;
283   }
284   cerr << endl;
285   cerr << "options:" << endl << endl;
286   cerr << "  --min-working-set-size=N:" << endl;
287   cerr << "       Set the minimum working set size to N bytes." << endl;
288   cerr << "       This is rounded up as needed to a multiple of matrix size." << endl;
289   cerr << "       A larger working set lowers the chance of a warm cache." << endl;
290   cerr << "       The default value 0 means use a large enough working" << endl;
291   cerr << "       set to likely outsize caches." << endl;
292   cerr << "       A value of 1 (that is, 1 byte) would mean don't do anything to" << endl;
293   cerr << "       avoid warm caches." << endl;
294   exit(1);
295 }
296 
measure_clock_speed()297 float measure_clock_speed()
298 {
299   cerr << "Measuring clock speed...                              \r" << flush;
300 
301   vector<float> all_gflops;
302   for (int i = 0; i < 8; i++) {
303     benchmark_t b(1024, 1024, 1024);
304     b.run();
305     all_gflops.push_back(b.gflops);
306   }
307 
308   sort(all_gflops.begin(), all_gflops.end());
309   float stable_estimate = all_gflops[2] + all_gflops[3] + all_gflops[4] + all_gflops[5];
310 
311   // multiply by an arbitrary constant to discourage trying doing anything with the
312   // returned values besides just comparing them with each other.
313   float result = stable_estimate * 123.456f;
314 
315   return result;
316 }
317 
318 struct human_duration_t
319 {
320   int seconds;
human_duration_thuman_duration_t321   human_duration_t(int s) : seconds(s) {}
322 };
323 
operator <<(ostream & s,const human_duration_t & d)324 ostream& operator<<(ostream& s, const human_duration_t& d)
325 {
326   int remainder = d.seconds;
327   if (remainder > 3600) {
328     int hours = remainder / 3600;
329     s << hours << " h ";
330     remainder -= hours * 3600;
331   }
332   if (remainder > 60) {
333     int minutes = remainder / 60;
334     s << minutes << " min ";
335     remainder -= minutes * 60;
336   }
337   if (d.seconds < 600) {
338     s << remainder << " s";
339   }
340   return s;
341 }
342 
343 const char session_filename[] = "/data/local/tmp/benchmark-blocking-sizes-session.data";
344 
serialize_benchmarks(const char * filename,const vector<benchmark_t> & benchmarks,size_t first_benchmark_to_run)345 void serialize_benchmarks(const char* filename, const vector<benchmark_t>& benchmarks, size_t first_benchmark_to_run)
346 {
347   FILE* file = fopen(filename, "w");
348   if (!file) {
349     cerr << "Could not open file " << filename << " for writing." << endl;
350     cerr << "Do you have write permissions on the current working directory?" << endl;
351     exit(1);
352   }
353   size_t benchmarks_vector_size = benchmarks.size();
354   fwrite(&max_clock_speed, sizeof(max_clock_speed), 1, file);
355   fwrite(&benchmarks_vector_size, sizeof(benchmarks_vector_size), 1, file);
356   fwrite(&first_benchmark_to_run, sizeof(first_benchmark_to_run), 1, file);
357   fwrite(benchmarks.data(), sizeof(benchmark_t), benchmarks.size(), file);
358   fclose(file);
359 }
360 
deserialize_benchmarks(const char * filename,vector<benchmark_t> & benchmarks,size_t & first_benchmark_to_run)361 bool deserialize_benchmarks(const char* filename, vector<benchmark_t>& benchmarks, size_t& first_benchmark_to_run)
362 {
363   FILE* file = fopen(filename, "r");
364   if (!file) {
365     return false;
366   }
367   if (1 != fread(&max_clock_speed, sizeof(max_clock_speed), 1, file)) {
368     return false;
369   }
370   size_t benchmarks_vector_size = 0;
371   if (1 != fread(&benchmarks_vector_size, sizeof(benchmarks_vector_size), 1, file)) {
372     return false;
373   }
374   if (1 != fread(&first_benchmark_to_run, sizeof(first_benchmark_to_run), 1, file)) {
375     return false;
376   }
377   benchmarks.resize(benchmarks_vector_size);
378   if (benchmarks.size() != fread(benchmarks.data(), sizeof(benchmark_t), benchmarks.size(), file)) {
379     return false;
380   }
381   unlink(filename);
382   return true;
383 }
384 
try_run_some_benchmarks(vector<benchmark_t> & benchmarks,double time_start,size_t & first_benchmark_to_run)385 void try_run_some_benchmarks(
386   vector<benchmark_t>& benchmarks,
387   double time_start,
388   size_t& first_benchmark_to_run)
389 {
390   if (first_benchmark_to_run == benchmarks.size()) {
391     return;
392   }
393 
394   double time_last_progress_update = 0;
395   double time_last_clock_speed_measurement = 0;
396   double time_now = 0;
397 
398   size_t benchmark_index = first_benchmark_to_run;
399 
400   while (true) {
401     float ratio_done = float(benchmark_index) / benchmarks.size();
402     time_now = timer.getRealTime();
403 
404     // We check clock speed every minute and at the end.
405     if (benchmark_index == benchmarks.size() ||
406         time_now > time_last_clock_speed_measurement + 60.0f)
407     {
408       time_last_clock_speed_measurement = time_now;
409 
410       // Ensure that clock speed is as expected
411       float current_clock_speed = measure_clock_speed();
412 
413       // The tolerance needs to be smaller than the relative difference between
414       // clock speeds that a device could operate under.
415       // It seems unlikely that a device would be throttling clock speeds by
416       // amounts smaller than 2%.
417       // With a value of 1%, I was getting within noise on a Sandy Bridge.
418       const float clock_speed_tolerance = 0.02f;
419 
420       if (current_clock_speed > (1 + clock_speed_tolerance) * max_clock_speed) {
421         // Clock speed is now higher than we previously measured.
422         // Either our initial measurement was inaccurate, which won't happen
423         // too many times as we are keeping the best clock speed value and
424         // and allowing some tolerance; or something really weird happened,
425         // which invalidates all benchmark results collected so far.
426         // Either way, we better restart all over again now.
427         if (benchmark_index) {
428           cerr << "Restarting at " << 100.0f * ratio_done
429                << " % because clock speed increased.          " << endl;
430         }
431         max_clock_speed = current_clock_speed;
432         first_benchmark_to_run = 0;
433         return;
434       }
435 
436       bool rerun_last_tests = false;
437 
438       if (current_clock_speed < (1 - clock_speed_tolerance) * max_clock_speed) {
439         cerr << "Measurements completed so far: "
440              << 100.0f * ratio_done
441              << " %                             " << endl;
442         cerr << "Clock speed seems to be only "
443              << current_clock_speed/max_clock_speed
444              << " times what it used to be." << endl;
445 
446         unsigned int seconds_to_sleep_if_lower_clock_speed = 1;
447 
448         while (current_clock_speed < (1 - clock_speed_tolerance) * max_clock_speed) {
449           if (seconds_to_sleep_if_lower_clock_speed > 32) {
450             cerr << "Sleeping longer probably won't make a difference." << endl;
451             cerr << "Serializing benchmarks to " << session_filename << endl;
452             serialize_benchmarks(session_filename, benchmarks, first_benchmark_to_run);
453             cerr << "Now restart this benchmark, and it should pick up where we left." << endl;
454             exit(2);
455           }
456           rerun_last_tests = true;
457           cerr << "Sleeping "
458                << seconds_to_sleep_if_lower_clock_speed
459                << " s...                                   \r" << endl;
460           sleep(seconds_to_sleep_if_lower_clock_speed);
461           current_clock_speed = measure_clock_speed();
462           seconds_to_sleep_if_lower_clock_speed *= 2;
463         }
464       }
465 
466       if (rerun_last_tests) {
467         cerr << "Redoing the last "
468              << 100.0f * float(benchmark_index - first_benchmark_to_run) / benchmarks.size()
469              << " % because clock speed had been low.   " << endl;
470         return;
471       }
472 
473       // nothing wrong with the clock speed so far, so there won't be a need to rerun
474       // benchmarks run so far in case we later encounter a lower clock speed.
475       first_benchmark_to_run = benchmark_index;
476     }
477 
478     if (benchmark_index == benchmarks.size()) {
479       // We're done!
480       first_benchmark_to_run = benchmarks.size();
481       // Erase progress info
482       cerr << "                                                            " << endl;
483       return;
484     }
485 
486     // Display progress info on stderr
487     if (time_now > time_last_progress_update + 1.0f) {
488       time_last_progress_update = time_now;
489       cerr << "Measurements... " << 100.0f * ratio_done
490            << " %, ETA "
491            << human_duration_t(float(time_now - time_start) * (1.0f - ratio_done) / ratio_done)
492            << "                          \r" << flush;
493     }
494 
495     // This is where we actually run a benchmark!
496     benchmarks[benchmark_index].run();
497     benchmark_index++;
498   }
499 }
500 
run_benchmarks(vector<benchmark_t> & benchmarks)501 void run_benchmarks(vector<benchmark_t>& benchmarks)
502 {
503   size_t first_benchmark_to_run;
504   vector<benchmark_t> deserialized_benchmarks;
505   bool use_deserialized_benchmarks = false;
506   if (deserialize_benchmarks(session_filename, deserialized_benchmarks, first_benchmark_to_run)) {
507     cerr << "Found serialized session with "
508          << 100.0f * first_benchmark_to_run / deserialized_benchmarks.size()
509          << " % already done" << endl;
510     if (deserialized_benchmarks.size() == benchmarks.size() &&
511         first_benchmark_to_run > 0 &&
512         first_benchmark_to_run < benchmarks.size())
513     {
514       use_deserialized_benchmarks = true;
515     }
516   }
517 
518   if (use_deserialized_benchmarks) {
519     benchmarks = deserialized_benchmarks;
520   } else {
521     // not using deserialized benchmarks, starting from scratch
522     first_benchmark_to_run = 0;
523 
524     // Randomly shuffling benchmarks allows us to get accurate enough progress info,
525     // as now the cheap/expensive benchmarks are randomly mixed so they average out.
526     // It also means that if data is corrupted for some time span, the odds are that
527     // not all repetitions of a given benchmark will be corrupted.
528     random_shuffle(benchmarks.begin(), benchmarks.end());
529   }
530 
531   for (int i = 0; i < 4; i++) {
532     max_clock_speed = max(max_clock_speed, measure_clock_speed());
533   }
534 
535   double time_start = 0.0;
536   while (first_benchmark_to_run < benchmarks.size()) {
537     if (first_benchmark_to_run == 0) {
538       time_start = timer.getRealTime();
539     }
540     try_run_some_benchmarks(benchmarks,
541                             time_start,
542                             first_benchmark_to_run);
543   }
544 
545   // Sort timings by increasing benchmark parameters, and decreasing gflops.
546   // The latter is very important. It means that we can ignore all but the first
547   // benchmark with given parameters.
548   sort(benchmarks.begin(), benchmarks.end());
549 
550   // Collect best (i.e. now first) results for each parameter values.
551   vector<benchmark_t> best_benchmarks;
552   for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
553     if (best_benchmarks.empty() ||
554         best_benchmarks.back().compact_product_size != it->compact_product_size ||
555         best_benchmarks.back().compact_block_size != it->compact_block_size)
556     {
557       best_benchmarks.push_back(*it);
558     }
559   }
560 
561   // keep and return only the best benchmarks
562   benchmarks = best_benchmarks;
563 }
564 
565 struct measure_all_pot_sizes_action_t : action_t
566 {
invokation_namemeasure_all_pot_sizes_action_t567   virtual const char* invokation_name() const { return "all-pot-sizes"; }
runmeasure_all_pot_sizes_action_t568   virtual void run() const
569   {
570     vector<benchmark_t> benchmarks;
571     for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
572       for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
573         for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
574           for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
575             for (size_t kblock = minsize; kblock <= ksize; kblock *= 2) {
576               for (size_t mblock = minsize; mblock <= msize; mblock *= 2) {
577                 for (size_t nblock = minsize; nblock <= nsize; nblock *= 2) {
578                   benchmarks.emplace_back(ksize, msize, nsize, kblock, mblock, nblock);
579                 }
580               }
581             }
582           }
583         }
584       }
585     }
586 
587     run_benchmarks(benchmarks);
588 
589     cout << "BEGIN MEASUREMENTS ALL POT SIZES" << endl;
590     for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
591       cout << *it << endl;
592     }
593   }
594 };
595 
596 struct measure_default_sizes_action_t : action_t
597 {
invokation_namemeasure_default_sizes_action_t598   virtual const char* invokation_name() const { return "default-sizes"; }
runmeasure_default_sizes_action_t599   virtual void run() const
600   {
601     vector<benchmark_t> benchmarks;
602     for (int repetition = 0; repetition < measurement_repetitions; repetition++) {
603       for (size_t ksize = minsize; ksize <= maxsize; ksize *= 2) {
604         for (size_t msize = minsize; msize <= maxsize; msize *= 2) {
605           for (size_t nsize = minsize; nsize <= maxsize; nsize *= 2) {
606             benchmarks.emplace_back(ksize, msize, nsize);
607           }
608         }
609       }
610     }
611 
612     run_benchmarks(benchmarks);
613 
614     cout << "BEGIN MEASUREMENTS DEFAULT SIZES" << endl;
615     for (auto it = benchmarks.begin(); it != benchmarks.end(); ++it) {
616       cout << *it << endl;
617     }
618   }
619 };
620 
main(int argc,char * argv[])621 int main(int argc, char* argv[])
622 {
623   double time_start = timer.getRealTime();
624   cout.precision(4);
625   cerr.precision(4);
626 
627   vector<unique_ptr<action_t>> available_actions;
628   available_actions.emplace_back(new measure_all_pot_sizes_action_t);
629   available_actions.emplace_back(new measure_default_sizes_action_t);
630 
631   auto action = available_actions.end();
632 
633   if (argc <= 1) {
634     show_usage_and_exit(argc, argv, available_actions);
635   }
636   for (auto it = available_actions.begin(); it != available_actions.end(); ++it) {
637     if (!strcmp(argv[1], (*it)->invokation_name())) {
638       action = it;
639       break;
640     }
641   }
642 
643   if (action == available_actions.end()) {
644     show_usage_and_exit(argc, argv, available_actions);
645   }
646 
647   for (int i = 2; i < argc; i++) {
648     if (argv[i] == strstr(argv[i], "--min-working-set-size=")) {
649       const char* equals_sign = strchr(argv[i], '=');
650       min_working_set_size = strtoul(equals_sign+1, nullptr, 10);
651     } else {
652       cerr << "unrecognized option: " << argv[i] << endl << endl;
653       show_usage_and_exit(argc, argv, available_actions);
654     }
655   }
656 
657   print_cpuinfo();
658 
659   cout << "benchmark parameters:" << endl;
660   cout << "pointer size: " << 8*sizeof(void*) << " bits" << endl;
661   cout << "scalar type: " << type_name<Scalar>() << endl;
662   cout << "packet size: " << internal::packet_traits<MatrixType::Scalar>::size << endl;
663   cout << "minsize = " << minsize << endl;
664   cout << "maxsize = " << maxsize << endl;
665   cout << "measurement_repetitions = " << measurement_repetitions << endl;
666   cout << "min_accurate_time = " << min_accurate_time << endl;
667   cout << "min_working_set_size = " << min_working_set_size;
668   if (min_working_set_size == 0) {
669     cout << " (try to outsize caches)";
670   }
671   cout << endl << endl;
672 
673   (*action)->run();
674 
675   double time_end = timer.getRealTime();
676   cerr << "Finished in " << human_duration_t(time_end - time_start) << endl;
677 }
678